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AbstratIn this artile, we analyze the three-omponent reation-di�usion system originally developedby Shenk, Or-Guil, Bode, and Purwins in PRL 78, 3781{4 (1997). The system onsists ofbistable ativator-inhibitor equations with an additional inhibitor that di�uses more rapidlythan the standard inhibitor (or reovery variable). It has been used by several authors asa prototype three-omponent system that generates rih pulse dynamis and interations,and this rihness is the main motivation for the analysis we present. We demonstrate theexistene of stationary one-pulse and two-pulse solutions, and travelling one-pulse solutions,on the real line, and we determine the parameter regimes in whih they exist. Also, forone-pulse solutions, we analyze various bifurations, inluding the saddle-node bifurationin whih they are reated, as well as the bifuration from a stationary to a travelling pulse,whih we show an be either subritial or superritial. For two-pulse solutions, we showthat the third omponent is essential, sine the redued bistable two-omponent systemdoes not support them. We also analyze the saddle-node bifuration in whih two-pulsesolutions are reated. The analytial method used to onstrut all of these pulse solutionsis geometri singular perturbation theory, whih allows us to show that these solutions liein the transverse intersetions of invariant manifolds in the phase spae of the assoiated6-dimensional travelling wave system. Finally, as we illustrate with numerial simulations,these solutions form the bakbone of the rih pulse dynamis this system exhibits, inludingpulse repliation, pulse annihilation, breathing pulses, and pulse sattering, among others.Keywords: three-omponent reation-di�usion systems; one-pulse solutions; travelling pulsesolutions; two-pulse solutions; geometri singular perturbation theory; Melnikov funtion.AMS (MOS) subjet lassi�ations: Primary: 35K55, 35B32, 34C37 Seondary: 35K40.1



1 Introdution
Spatially-loalized strutures, suh as fronts, pulses and spots, have been found to exhibit a widevariety of interesting dynamis in dissipative systems. These dynamis inlude repulsion, anni-hilation, attration, breathing, ollision, sattering, self-repliation, and spontaneous generation.The rihness of the observed dynamis typially inreases with the omplexity and the size of thesystem. Loalized strutures, that do not exist in reation-di�usion (RD) systems with a smallnumber of omponents, may readily exist when more omponents and more terms are added tothe system. Likewise, solutions that are unstable in small or simple RD systems may beomestable with suh additions.The aim of this artile is to report on the mathematial analysis of a paradigm example thatexhibits this inreased rihness. In partiular, we study the three-omponent model introduedin [23℄ and studied further in [2, 16, 18, 19, 24, 25℄. In one spae dimension, the equations are8<: Ut = DUUxx + f(U)� �3V � �4W + �1�Vt = DV Vxx + U � V�Wt = DWWxx + U �W : (1.1)
where we used the notation of [16℄ and we note that (1.1) has the reversibility symmetry x! �x.Here, the (U; V )-subsystem is a lassial, bistable two-omponent RD system, whih exhibits dy-namis similar to the lassial FitzHugh-Nagumo equations (although here DV 6= 0, whereasDV = 0 in FHN), and the variable W denotes an added inhibitor omponent. We will show thatit is responsible for inreasing the rihness of the types of solutions the model possesses.In (1.1), U; V , and W are real-valued funtions of x 2 R and t 2 R+ , and the subsripts in-diate partial derivatives. The parameters � and � are positive onstants, and the primaryinterest is in using � as the bifuration parameter. The di�usivities of the respetive omponentsare denoted by DU ; DV ; and DW , f(U) is a bistable ubi reation funtion (often taken to bef(U) = 2U � U3), �3 and �4 denote reation rates, and �1 denotes a onstant soure term.The fundamental disovery reported in [23℄ is that, in this three-omponent model, the addedomponentW an stabilize stationary and travelling single spot solutions and multi-spot solutionsin two spae dimensions, whih otherwise are inherently unstable in the lassial two-omponent(U; V )-bistable model. This stabilization was shown to our when DW is suÆiently large rel-ative to DU and DV , beause then the presene of W prevents spots from extending in thediretions perpendiular to their diretions of motion. In this manner, W suppresses the insta-bility that spots undergo in two-omponent systems [23℄.The dynamis of pulses in the one-dimensional model (1.1) is also known to be riher thanin the orresponding one-dimensional version of the two-omponent model. Pulses ollide, sat-ter, annihilate, among others, as has been shown in [16, 17℄, whereas the dynamis of pulsesin the restrited two-omponent system is muh less rih. A speial lass of unstable two-pulsesolutions, alled sattors or separators, is identi�ed for (1.1) in [16, 17℄. It is shown that theirstable and unstable manifolds organize the evolution in phase spae of all nearby solutions. Morepreisely, during the ourse of a ollision between two pulses, they onverge to a separator state,and the loation of the initial data relative to the stable and unstable manifolds of this separatordetermines how and when the pulses satter o� eah other. Furthermore, in some parameterregimes, the sattering proess may be direted by a ombination of two separators, where theolliding pulses �rst approah one separator, spend a long time near it, and then approah aseond separator state, and then �nally repel or annihilate, see [16, 17℄.Our work is inspired by the results from [23, 19℄ and [16, 17℄. We arry out a omplementary,2



rigorous analysis of the existene of ertain pulse solutions for a saled version of the three-omponent model, see (1.6) below. The model has a rih geometri struture that will be studiedusing geometri singular perturbation theory, and we note that the appliation of this theory ishallenging due to the fat that the assoiated ordinary di�erential equations are 6-dimensional.
1.1 Statement of the model equationsIn [2, 16, 18, 19, 23, 24, 25℄, the numerial values of the di�usivities of the three speies di�er byseveral orders of magnitude. For example, in [16℄, the values are DU = 5�10�6, DV = 5�10�5,and DW = 10�2. Therefore, we are motivated to introdue a saled spatial variable~x = xpDV : (1.2)For omputational onveniene we also sale out the fator two in the nonlinearity f(U) =2U � U3. Therefore, we introdue~t = 2t ; ( ~U; ~V ; ~W ) = 12p2(U; V;W ); (~� ; ~�) = 2(�; �); (~�1; ~�3; ~�4) = 12 ( 12p2�1; �3; �4): (1.3)In terms of these saled quantities, the system (1.1) is8<: ~U~t = "2 ~U~x~x + ~U � ~U3 � ~�3 ~V � ~�4 ~W + ~�1~� ~V~t = ~V~x~x + ~U � ~V~� ~W~t = D2 ~W~x~x + ~U � ~W ; (1.4)
with the nondimensional di�usivities "2 = DU=(2DV )� 1 and D2 = DW =DV � 1.As to the parameters in the reation terms, the numerial values that are used in [16℄ are(�1; �3; �4) = (�7; 1; 8:5), and very similar values are used in [23℄. While these are O(1) withrespet to ", it is helpful to �rst study the system with O(") values of these parameters; i.e., tointrodue saled parameters, as follows:~�1 = �"; ~�3 = "�; ~�4 = "�; (1.5)where �; �, and  are O(1) quantities and where we have taken �1 to be negative, sine it isnegative in all of the above ited artiles.The rationale for this hoie of salings (1.5) is threefold. First, this hoie was made to failitatethe mathematial analysis, sine in this regime the terms in the U -equation orresponding to thesoure and to the oupling from the inhibitor omponents are weak, yet not too weak. In fat,the e�ets of the soure and the oupling terms are too weak when they are of O("2) [5℄. Seond,it turns out that muh of the rih pulse dynamis exhibited by system (1.4) exists also when theparameters have O(") values, as we will show in this artile (see also [20℄). Therefore, one mightreasonably hope to understand the origins of the dynamis observed in [16℄ by beginning withthe present analysis. Third, in the numerial simulations of [23, 16℄, whih were done on boundeddomains, the W variable stays near �0:8, approximately. Hene, in a very approximate (andrough) sense one might argue, as follows, that there is an e�etive impat of the parameters in theU -equation of (1.4) that is of O("). Sine ~�3 = 0:5 and " = 110p5 � 0:22, the e�et of V in thisequation an indeed be onsidered to be O("). Moreover, by the salings (1.3), ~�4 ~W � ~�1 � 0:07for W = �0:8 (and �1;4 as in [16℄), whih is learly also O("). Thus, it appears that the impatof the soure and oupling terms are indeed small.
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Figure 1: Stable stationary one-pulse and two-pulse solutions of system (1.6) obtained vianumerial simulation. For the one-pulse the system parameters where (�; �; ;D; �; �; ") =(3; 1; 2; 5; 1; 1; 0:01), and for the two-pulse we had (�; �; ;D; �; �; ") = (2;�1;�0:25; 5; 1; 1; 0:01).
In light of the above salings, the model equations that we study are8<: Ut = "2Uxx + U � U3 � "(�V + �W + )�Vt = Vxx + U � V�Wt = D2Wxx + U �W ; (1.6)
where we dropped the tildes. Furthermore, we require that 0 < " � 1, 0 < �; � � 1="3, D > 1,and �; �;  2 R , where the upper bound on � and � is derived in Setion 3.1. Moreover, weassume that the solutions (U(x; t); V (x; t);W (x; t)) are bounded over the entire domain.At various stages throughout the analysis, we will see that it is also useful to examine thethree-omponent model in a strethed (or `fast') spatial variable � = x=":8><>: Ut = U�� + U � U3 � "(�V + �W + )�Vt = 1"2V�� + U � V�Wt = D2"2 W�� + U �W : (1.7)
We refer to this system as the fast system, and to system (1.6) as the slow system.The system (1.6) or (1.7) is well-suited as a paradigm for the analysis of three-omponent RDsystems. On the one hand, it is suÆiently nonlinear and omplex so that it supports a rihvariety of loalized strutures, and on the other hand it is suÆiently simple, with linear reationfuntions in the seond and third omponents and with linear oupling, so that muh of thedynamis an be omputed analytially, inluding ertain bifurations. See also [11℄. In thisrespet, we believe that the results presented here also provide a basis to establish a theory ofinterating pulses in this paradigm model.
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1.2 Outline of the main resultsWe begin in Setion 2 with examining the stationary, or standing, one-pulse solutions. Forthese solutions, the U -omponent onsists of a front, whih onnets the (quiesent) state U =�1 +O(") to the (ative) state U = 1 +O("), and a bak, whih provides the opposite onne-tion, onatenated together to form a pulse (or homolini orbit). Both the front and the bakare sharp, so that the pulse is highly loalized, due to the asymptotially small value of "2 in(1.6). The V -omponent of the one-pulse solutions onsists of a smooth pulse that is enteredon the middle of the interval in whih the U -omponent is in the ative state and that variesover slightly wider interval than the U -pulse. Finally, the W -omponent also onsists of a single,smooth pulse, but it varies on a wider interval than either of the other two omponents due tothe fat that D > 1. See Figure 1. The standing one-pulse solutions are formally onstrutedin Setion 2.2. Then, we make this onstrution rigorous in Theorem 2.1, whih states that thethree-omponent model (1.6) possesses standing one-pulse solutions whenever the system param-eters satisfy (2.22). See Setion 2.3 for the statement of this theorem and Setion 2.4 for its proof.Next, we analyze the existene of travelling one-pulse solutions. This analysis, presented inSetion 3, follows the same two-step proedure: we �rst onstrut solutions formally (see Se-tion 3.1) and then we prove their existene rigorously (see Setions 3.2 and 3.3). The main resultis Theorem 3.1, whih states that there exist travelling pulse solutions whenever either � or � (orboth) is O(1="2) and the system parameters satisfy (3.13).Given these results about standing and travelling one-pulse solutions, it is of interest to in-vestigate the bifuration of the former into the latter. We do so in Setion 4. The leading orderresults are given by (4.2) in Setion 4.1, and then the rigorous, high-order asymptotis for themain bifuration parameter � as a funtion of the other parameters is summarized in Lemma 4.1,see Setion 4.2. It turns out that this bifuration an be superritial, as well as subritial, de-pending on the parameters, see Corollaries 4.2 and 4.3. This result ontrasts with the bifurationresult for the two-dimensional version of this model, obtained in [19℄, where it was shown thatthis bifuration is superritial.Having ompleted our analysis of the one-pulse solutions, we next turn our attention to two-pulse solutions of (1.6). The main result is Theorem 5.1, whih guarantees the existene oftwo-pulse solutions whenever the system parameters satisfy (5.6). These two-pulse solutionshave U -omponents that onsist of two opies of the U -omponent of the single pulses, while theV - and W -omponents exhibit two peaks as well, but are not near equilibrium in the intervalbetween their two peaks. See Figure 1. In this sense, the interation between the pulses is semi-strong, aording to the terminology of [3℄. We also note that the pair of equations (5.6) is ratheromplex, and we present investigations of it when D = 2, and when D is general. Moreover, wegive the asymptotis of the key quantities as D !1. See Setions 5.2 and 5.3, respetively.After ompleting the analysis of these pulse solutions, we examine in Setion 6 the two-omponent(U; V )-subsystem, obtained from (1.6) by setting W onstant at �1. This analysis of the two-omponent system enables us to make observations about the di�erenes between the two-omponent and the three-omponent systems. For instane, for the two-pulse solutions, weobserve that the inlusion of the third omponent is essential, beause the two-omponent ver-sion of the model annot possess two-pulse solutions. Simply put, there is not enough freedomin the two-omponent model to permit for the onstrution of these solutions, and our analysisreveals why the third omponent { whih naturally makes the phase spae of the assoiated ODEproblem 6-dimensional { reates suÆient spae/freedom for their existene.In Setion 7.1 we present the results of a series of numerial simulations of (1.6). These simula-
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tions on�rm the various analytial existene and bifuration results presented herein, and theyalso reveal the presene of rih pulse interations, inluding pulse reetion and annihilation,stable breathing single and double pulses (whih bifurate from stationary pulse solutions), pulsesattering, as well as ombinations of these. See Figures 14{18. The single and double pulses an-alyzed in this artile are key building bloks to understand these rih pulse interations. Finally,in Setion 7.2, we summarize our analysis and disuss some related items.Remark 1.1 The two-pulse solutions onstruted in [7, 10℄ for the FHN system di�er in severalrespets from those onstruted here. In FHN, these are essentially opies of the one-pulsesolution, that must be very far apart, and that exhibit osillatory behavior in the interval betweenthe pulses. The mehanism responsible for their existene is related to the lassial Shilnikovmehanism.Remark 1.2 Other examples of stabilization via the inlusion of an additional omponent in amodel are given for instane by the Gray-Sott and Gierer-Meinhardt systems. In these, one-pulse (homolini) solutions that are unstable with respet to the salar RD equation for theativator omponent are stabilized in ertain parameter regimes by the oupling to the equationfor the inhibitory omponent. The di�usive ux of inhibitor into the pulse domains helps toloalize the ativator onentration, hene stabilizing one-pulse solutions, and we refer to [3, 4℄for the mathematial analysis using the Evans funtion and the stability index. Moreover, it isis worth noting that the onverse may also arise; namely in [5℄ it is shown that stable fronts of abistable, salar RD equation are destabilized through oupling to a seond omponent when theparameters are hosen so that either the essential spetrum approahes the origin or an eigenvalueemerges from the essential spetrum and beomes unstable.
2 Stationary one-pulse solutions
2.1 Basi observationsFirst, we look at stationary pulses of system (1.7), i.e., we put (Ut; Vt;Wt) = (0; 0; 0). Byintroduing p = u�; q = 1"v� and r = D" w�, we transform system (1.7) into a 6-dimensionalsingular perturbed ordinary di�erential equation (ODE)8>>>>>><>>>>>>:

u� = pp� = �u+ u3 + "(�v + �w + )v� = "qq� = "(v � u)w� = "D rr� = "D (w � u): (2.1)
Although � is the spatial variable, it will play the role of `time' in our analysis. The systempossesses two symmetries� ! ��; p! �p; q ! �q; r ! �ru! �u; p! �p; v ! �v; q ! �q; w ! �w; r ! �r;  ! �: (2.2)Note that the �rst symmetry orresponds to the reversibility symmetry (x; �) ! (�x;��) in(1.6), (1.7), respetively. The �xed points of system (2.1) have p = q = r = 0, and u = v = wwith u3 + u(�1 + "(�+ �)) + " = 0. Solving this last equation yieldsu�" = �1� 12" (�+ � � ) +O("2); u0" = " +O("2): (2.3)
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Figure 2: The phase portrait of the fast redued Hamiltonian system (2.5).

Hene, there are three �xed points,P�" = (u�" ; 0; u�" ; 0; u�" ; 0); P 0" = (u0"; 0; u0"; 0; u0"; 0): (2.4)It an be heked [11℄ that P�" , respetively P 0" , represent stable, respetively unstable, trivialstates of the PDE (1.6),(1.7).The fast redued system (FRS) is obtained by letting " # 0 in (2.1),� u� = pp� = �u+ u3 ; (2.5)as well as (v�; q�; w�; r�) = (0; 0; 0; 0), i.e., (v; q; w; r) � (v�; q�; w�; r�) with v�; q�; w�; r� 2 Ronstants. The �xed points of the FRS are given by (u; p) 2 f(�1; 0); (0; 0)g. The former aresaddles. The latter, (0; 0), is a enter that orresponds to P 0" and thus to an unstable trivialstate of (1.6) { we will therefore not onsider it.We de�ne the 4-dimensional invariant manifolds M�0 byM�0 := f(u; p; v; q; r; w) 2 R 6 : u = �1; p = 0g;whih are the unions of the saddle points over all possible v�; q�; w�; r� 2 R . Planar system (2.5)is integrable with HamiltonianH(u; p) = 12(p2 + u2)� 14(u4 + 1) ; (2.6)whih is hosen suh thatH(u; p) = 0 onM�0 . The FRS possesses heterolini orbits (u0;�h (�); p0;�h (�))that onnet the �xed points (u; p) = (�1; 0) to (u; p) = (�1; 0),u0;�h (�) = � tanh�12p2�� ; p0;�h (�) = �12p2seh2�12p2��: (2.7)See Figure 2. The manifolds M�0 are normally hyperboli, and they have 5-dimensional stableand unstable manifolds Wu;s(M�0 ) that are the unions of the four-parameter (v�; q�; w�; r�)-families of one-dimensional stable and unstable manifolds of the saddle points (u; p) = (�1; 0) in(2.5).Fenihel's �rst persistene theorem [8, 12, 15℄ implies that for " small enough, system (2.1)7
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Figure 3: The ow generated by the (v; q)-subsystem on M�" and that of the (w; r)-subsystemon M+" . Note that stable/unstable manifolds lu;s;�v and lu;s;�w have the same slopes.
has loally invariant slow manifolds M�" whih are O(") C1-lose to M�0 , i.e., M�" an berepresented by M�" := fu = �1 + "u�1 (v; q; w; r; "); p = "p�1 (v; q; w; r; ")g ; (2.8)where the graphs u1 and p1 an be omputed by an expansion in ",M�" = fu = �1� 12" (�v + �w + ) +O("2); p = O("2)g : (2.9)The appliation of Fenihel's seond persistene theorem establishes thatM�" have 5-dimensionalstable and unstable manifolds, W s;u(M�" ), that are O(") C1-lose to their " = 0 ounterpartsWu;s(M�0 ). Observe that the ritial points P�" have 3-dimensional stable and unstable mani-folds Wu;s(P�" ) whih are ontained in Wu;s(M�" ).There are two slow redued limit systems (SRS), both of whih we write in terms of the fastvariable �: one that governs the ow on M�" ,� v�� = "2(v + 1 +O("));w�� = "2D2 (w + 1 +O(")); (2.10)and one that governs the ow on M+" ,� v�� = "2(v � 1 +O("));w�� = "2D2 (w � 1 +O(")): (2.11)Observe that (v; q; w; r) = (�1; 0;�1; 0) + O(") are saddle points on M�" that orrespond tothe �xed points P�" (2.4). Also note that the v- and w-equations are deoupled, so that bothODEs an be onsidered separately. See also Remark 2.1. Hene, we have a (v; q)-subsystemand a (w; r)-subsystem, both with two saddle points. These four saddle points eah have one-dimensional stable and unstable manifolds, lu;s;�v;w , that are given to leading order by`u;�v = fq = �1 + vg ; `u;�w = fr = �1 + wg ;`s;�v = fq = �1� vg ; `s;�w = fr = �1� wg : (2.12)In Figure 3, we sketh some orbits on the manifolds M�" .
2.2 The onstrution of one-pulse solutions �h;j(�) homolini to P�"In this setion, we onsider symmetri standing one-pulse solutions �h;j(�) that are homolinito P�" . Here, we present the formal derivation. Then, in setion 2.3, we formulate a theorem8



based on this analysis { Theorem 2.1, and we prove this theorem in Setion 2.4. This proof alsoestablishes the validity of the asymptoti analysis in this setion. Note that orbits homolini tothe other �xed point P+" an be obtained from these orbits by appliation of the symmetries (2.2).Before we start with the onstrution of �h;j(�), we introdue some notation. From Figures1 and 4, we notie that there are �ve di�erent regions, three in whih the leading order spatialevolution is given by the SRS (2.10) and (2.11), and two regions that are governed by the FRS(2.5). Sine the PDEs are translation invariant, we may parametrize the pulse solution so thatits u; v; w-omponents are at a loal extremum at � = 0, i.e., p�h;j(0) = q�h;j(0) = r�h;j(0) = 0 {we will �nd that v�h;j(0) and w�h;j(0) are maxima, while u�h;j(0) is a (loal) minimum. Moreover,we introdue �� as the position of the `jump mid-point(s)', more preisely �� is suh that �h;j(�)is half-way between the two slow manifolds at � = ��, i.e., u�h;j = 0 at � = ��� (2.2). We will�nd that �� = O( 1" ), but at this point of the analysis it is still undetermined. Next, we de�nethe two `fast intervals' I�f and the three `slow intervals' I�s ; I0s ,I�f := ���� � 1p" ;��� + 1p"� ; I+f := ��� � 1p" ; �� + 1p"� ;I�s := ��1;��� � 1p"i ; I0s := h��� + 1p" ; �� � 1p"i ; I+s := h�� + 1p" ;1� : (2.13)
Note that the hoie of the width for I�f of 2=p" is standard, but arbitrary. We an now give amore preise de�nition of the �ve regions mentioned above (see Figure 4).1: The dynamis take plae exponentially lose to the slow manifold M�" : � 2 I�s .2: The dynamis take plae in the fast �eld: � 2 I�f .3: The dynamis take plae exponentially lose to M+" : � 2 I0s .4: The dynamis take plae in the fast �eld: � 2 I+f .5: The dynamis take plae exponentially lose to M�" : � 2 I+s .By de�nition,�h;j = (u�h;j ; p�h;j ; v�h;j ; q�h;j ; w�h;j ; r�h;j) 2Wu(P�" ) \W s(P�" ) �Wu(M�" ) \W s(M�" );while the jump mid-points are de�ned by�h;j(���) = (0;�p�; v�;�q�; w�;�r�):Furthermore, sine �h;j(�) remains exponentially lose toM+" for � 2 I0s , h;j(�) is also exponen-tially lose to Wu(P�" ) \W s(M+" ) and to W s(P�" ) \Wu(M+" ) for suÆiently long time. Notethat �h;j(�) =2 Wu(M�" ) \W s(M+" ) or W s(M�" ) \Wu(M+" ), sine it has to be able to jumpbak again from M+" to M�" .By onsidering possible take o� and touh down points of jumps through the fast �eld andby studying, in fat expliitly solving, the slow ows onM�" (2.10) and onM+" (2.11), we obtainrelations between the oordinates (v�;�q�; w�;�r�) of the jump mid-points and their spatialpositions ��� that uniquely determine the homolini orbit(s) �h;j(�); see Remark 2.1.For " 6= 0, the Hamiltonian H(u; p) (2.6) is not onserveddd�H(u(�); p(�)) = uu� + pp� � u3u�= up+ p ��u+ u3 + "(�v + �w + )�� u3p= "p(�v + �w + ) : (2.14)
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Figure 4: A shemati sketh of a standing pulse solution �h;j(�) in the six-dimensional(u; p; v; q; w; r)�phase spae. In region 1, the pulse is exponentially lose to M�" for a long`spatial time' and approahes P�" as � ! �1. It `takes o�' from M�" at � = ��� � 1p" (byde�nition) and `jumps' through the fast �eld (� 2 I�f ) towards M+" { this is region 2. In region3, �h;j(�) touhes down nearM+" at � = ��� + 1p" and remains exponentially lose toM+" until� = �� � 1p" , from where it jumps bak towards M�" , whih de�nes region 4 (� 2 I+f ). In the�nal region, 5, �h;j(�) is again exponentially lose to M�" and approahes P�" as � ! 1. Seealso Figure 1 in whih �h;j(�) exhibits the same struture.
Sine (u�h;j(�); p�h;j(�)) must be O(")-lose to the heterolini solution (u0;�h (�); p0;�h (�)) (2.7) ofthe FRS (2.5) in the fast �eld I�f , the total hange in H for an orbit �h;j(�) that jumps fromM�" to M+" is approximated by��f H(v�; q�; w�; r�) = RI�f H�d�= RI�f "p0;�h (� + ��)(�v� + �w� + )d� +O("p")= "(�v� + �w� + ) R1�1 p0;�h (�)d� +O("p")= 2"(�v� + �w� + ) +O("p");where we have used (2.7), (2.14), and assumed that �� = O( 1" ). Note that ��f H in prinipledepends on (v�; q�; w�; r�), the slow (v; q; w; r)-oordinates of the jump mid-points, and that theseoordinates do not vary to leading order during a jump through the fast �eld,��f v = RI�f v�d� = RI�f "qd� = 2q�p"+O(") = O(p") ;��f q = RI�f q�d� = RI�f "(v � u)d� = 2v�p"+O(") = O(p") ;��f w = RI�f w�d� = RI�f "D rd� = 2r� 1Dp"+O(") = O(p") ;��f r = RI�f r�d� = RI�f "D (w � u)d� = 2w� 1Dp"+O(") = O(p") : (2.15)
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On the other hand, suh an orbit �h;j(�) annot have a total hange of more than O("2) over ajump through the fast �eld I�f , sineH(u; p)jM�" = 12 ���1� 12"(�v + �w + ) +O("2)�2 +O("2)2�� 14 ���1� 12"(�v + �w + ) +O("2)�4 + 1�= 12 � 12"(�v + �w + )� 14 � 12"(�v + �w + )� 14 +O("2) = O("2) ; (2.16)where we reall (2.8), (2.9). Thus, we onlude that for an orbit �h;j(�) that jumps from M�"toM+" the following relation for the slow (v�; q�; w�; r�)-oordinates of the jump mid-point musthold to leading order �v� + �w� +  = 0 : (2.17)Note that ��f H(v�; q�; w�; r�) is in fat a Melnikov funtion that measures the distane betweenWu(M�" ) andW s(M+" ) as they interset the fu = 0g hyperplane (see [21, 3, 5℄). Condition (2.17)determines the 3-dimensional set of initial onditions in fu = 0g that de�nes the 4-dimensionalintersetion of the two 5-dimensional manifolds Wu(M�" ) and W s(M+" ) (reall that the phasespae is 6-dimensional and that the p-oordinates of these initial onditions are neessarily O(")lose to p0;�h (0) = 12p2 (2.7)).By the reversibility symmetry (2.2), we know that (2.17) also must hold for the (v�;�q�; w�;�r�)-oordinates, whih are the oordinates of the jump mid-points of the orbits that jump fromM+"to M�" near � = ��.Next, we study the slow ows on M�" . The equations (2.10) and (2.11) for these ows arelinear and deoupled, thus we may solve for v and w separately. Based on the above analysis, wewrite down the following boundary onditions for the solutions in regions 1, 3, and 5:vh(�1) = �1; vh(��� � 1p" ) = vh(�� � 1p" ) = v� +O(p");qh(�1) = 0; qh(��� � 1p" ) = �qh(�� � 1p" ) = q� +O(p");wh(�1) = �1; wh(��� � 1p" ) = wh(�� � 1p" ) = w� +O(p");rh(�1) = 0; rh(��� � 1p" ) = �rh(�� � 1p" ) = r� +O(p"); (2.18)
see Figures 1 and 4. Note that there are more (boundary) onditions than free parameters in thegeneral solutions of (2.10) and (2.11). As a onsequene, we �nd that both v� and q�, as well asw� and r�, must be related, q� = v� + 1; r� = w� + 1; (2.19)whih in geometrial terms is equivalent to (v�; q�) 2 `u;�v , and (w�; r�) 2 `u;�w (2.12), see alsoFigure 3. Moreover, (2.18) yields additional relations between v� and �� and between w� and ��,v� = �A2 ; w� = �A 2D where A = e�"�� : (2.20)Observe that, sine �� > 0, A 2 (0; 1), so that v�; w� 2 (�1; 0). For (v�; q�; w�; r�) and �� thatsatisfy (2.18), (2.19) and (2.20), we obtain the expliit (slow) solutions,

vh(�) = 8<: 2e"� sinh "�� � 1 in 1,�2e�"�� osh "� + 1 in 3,2e�"� sinh "�� � 1 in 5, wh(�) = 8<: 2e "D � sinh "D �� � 1 in 1,�2e� "D �� osh "D � + 1 in 3,2e� "D � sinh "D �� � 1 in 5 (2.21)
to leading order in ". Thus, together with the Melnikov ondition (2.17), the boundary onditions(2.18) imply three relations between v�, w�, and ��. These relations ombine into the followingjump ondition on A, �A2 + �A 2D =  +O(p") : (2.22)11



A solution A 2 (0; 1) of this equation uniquely determines the jump mid-points (v�;�q�; w�;�r�)in phase spae of a homolini solution �h;j(�), as well as their spatial positions ��� (2.20).Remark 2.1 We omment briey on the oupling between the V - and W -omponents and onthe related fat that the homolini orbits are isolated. In the PDE (1.7), the variables V andW seem to be only oupled through the equation for U . In the onstrution of �h;j(�), thisoupling indues the Melnikov ondition (2.17) and gives a natural relationship between the v�-and w�-oordinates of the jump mid-points. However, we observe that there is an additionalgeometrially-indued oupling between these two omponents that is not diretly obvious fromthe equations. In partiular, the jump mid-points �� must be the same for both the v- and w-omponents in (2.1), whih implies that also the `time-of-ight' along the slow manifolds must bethe same for both the v- and w-omponents, sine the parametrizations of all of the omponentsof a homolini orbit �h;j(�) are of ourse the same. Hene, from among the entire one-parameterset of pairs (v�; w�) that satisfy the Melnikov ondition (2.17), a unique pair, with v� = �(�w�)D(2.20), is seleted by this `time-of-ight' onstraint. Together, the two onstraints determine thevalues of v� and w� uniquely and thus establish that the homolini orbits are isolated.
2.3 Existene theoremBased on the analysis of the previous setion, we an formulate the following existene result:Theorem 2.1 Let (�; �; ;D; �; �; ") be suh that (2.22) has K solutions Aj 2 (0; 1) (K 2f0; 1; 2g), and let " be small enough. If K = 0, there are no symmetri orbits homolini to P�"in system (2.1). If K > 0, then there are K symmetri homolini orbits �h;j(�); j 2 f1;Kg toP�" that have a struture as skethed in Figure 4, i.e., the orbits �h;j(�) onsist of �ve distintparts, two fast parts in whih it is O(")-lose to a fast redued heterolini orbits (u0;�h (� ���); p0;�h (�� ��); v�;�q�; w�;�r�) (2.7) with (v�; q�; w�; r�) given by (2.19) and (2.20), and threeslow parts in whih (u�h;j(�); p�h;j(�)) = (�1; 0) + O(") and (v�h;j(�); q�h;j(�); w�h;j(�); r�h;j(�)) aregiven by (2.21), up to O(p")-orretions, with�� = ��;j = �1" logAj = O�1"� : (2.23)The orbits �h;j(�) orrespond to stationary pulse solutions(U(�; t); V (�; t);W (�; t)) � (uh;j(�); vh;j(�); wh;j(�))of (1.7).Moreover, if j�Dj > j�j and sgn(�) 6= sgn(�), then a saddle-node bifuration of homoliniorbits ours, to leading order in ", as  rosses through1(�; �;D) = (��)� 1D�1� DD�1 �D� 1D�1 �D� DD�1� > 0 for � < 0 < �,2(�; �;D) = �� 1D�1 (��) DD�1 �D� DD�1 �D� 1D�1� < 0 for � < 0 < �: (2.24)
The expliit expressions for the values 1;2 of the saddle-node bifurations are based on a straight-forward leading order analysis: set the partial derivative of (2.22) with respet to A equal to zeroto obtain A = A1(�; �;D) = ���D� �� 12 DD�1 2 (0; 1) ; (2.25)
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Figure 5: A graphial representation of the jump ondition (2.22) and the assoiated saddle-nodebifurations as desribed by Theorem 2.1 for � < 0 < � (with � + � > 0) and for � < 0 < �(also with �+ � > 0). Note that AK 2 (0; 1) for all parameter ombinations.
and then insert this expression bak into formula (2.22) to obtain 1;2 (2.24).In Figure 5, the relations between Aj and  as solutions of (2.22) have been plotted. Thetwo saddle-node ases at A desribed by the theorem are also learly visible. Two other bi-furations our: one at  = A = 0, whih orresponds to �� = 1 (2.23), i.e., the plateau atwhih the U -omponent of the one-pulse solution is near 1 beomes in�nitely long; the other at = �+ �, A = 1, where the pulse beomes in�nitely thin { see also Lemma 2.2 below.
2.4 The proof of Theorem 2.1The existene of the homolini orbit �h;j(�) �Wu(P�" )\W s(P�" ) will be established by study-ing Wu(M�" ) and Wu(P�" ) as they pass along M+" . The reversibility symmetry (2.2) plays aruial role in the proof.The manifold Wu(P�" ) is 3-dimensional, so that all orbits �P (�) � Wu(P�" ) an be representedby a two-parameter family, �P (�) = �P (�; v�; w�), where (v�; w�) represents the jump mid-point.Of ourse, we only onsider the part of Wu(P�" ) that is spanned by orbits �P (�) that are O(")lose to a heterolini solution of the FRS (2.5) away from M�" and M+" , i.e., we do not payattention to the other `half' of Wu(P�" ) that is spanned by solutions with a monotonially de-reasing u-oordinate { see Figure 2. More preisely, �P (�) is exponentially lose to M�" forasymptotially large, negative values of �, jumps away as � inreases, and rosses through thefu = 0g hyperplane at�P (��P;�) = �P (��P;�(v�; w�)) = (0; p�; v�; q�; w�; r�): (2.26)Note that �P (�; v�; w�) must be exponentially lose to the slow unstable manifold Wuslow(P�" ) �M�" that is spanned by `u;�v and `u;�w (2.12), so that q� = v�+1, r� = w�+1 as in (2.19). More-over, we note that this family of orbits �P (�; v�; w�) with �nite pairs (v�; w�) has as its naturalgeometri ompletion the slow unstable manifold Wuslow(P�" ) � M" in the limit that jv�j ! 1and jw�j ! 1 suh that their ratio remains �xed.Within Wu(P�" ), there is a priori a one-parameter family of orbits that is forward asymptoti toM+" , beause Wu(P�" ) \W s(M+" ) is the intersetion of a 3- and a 5-dimensional manifold in a6-dimensional spae, i.e., Wu(P�" )\W s(M+" ) is expeted to be two-dimensional. The Melnikov
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alulus [21, 3, 5℄ of the previous setion implies that �P (�; v�; w�) � Wu(P�" ) \W s(M+" ) if v�and w� are related by (2.17). By onstrution, Wu(P�" ) \W s(M+" ) is spanned by �het(�; v�) =�P (�; v�; w�(v�)) with w�(v�) given by (2.17).The evolution of �het(�; v�) near M+" is governed by the linear SRS (2.11). If v�; w� 2 (�1; 0),then �het(�) intersets the fq = 0g-hyperplane (Figure 3). We may assume that the inter-setion �het(�; v�) \ fq = 0g takes plae at � = 0. This assumption determines the jumpmid-point �het;�(v�) = �P;�(v�; w�(v�)). Moreover, it follows that �het;�(v�) > 0 (2.26). For� > ��het;�(v�) +O(1=p"), i.e., if �het(�; v�) is exponentially lose to M+" , the evolution of ther-oordinate r�het(�; v�) of �het(�; v�) an be omputed expliitly. For general v�, r�het(0; v�) 6= 0,but there are speial values of v� suh that r�het(0; v�) = 0. In fat, r�het(0; v�) = 0 if andonly if v� = �A20;�, where A0;� solves an algebrai equation that is to leading order given by(2.22). Note that this is in essene how (2.22) has been obtained. However, also note thatthe relation (2.22) has been dedued for the so far only formally onstruted homolini orbit�h;j(�) � Wu(P�" ) \ W s(P�" ), while A0;� orresponds to the heterolini orbit �het(�; v�) �Wu(P�" )\W s(M+" ). This is explained by the fat that �j;�, the position of the jump mid-pointof �h;j(�), is of O(1=") (2.23). Thus �h;j(�) must be exponentially lose toM+" for an asymptot-ially long `time'. Hene, it must be exponentially lose to W s(M+" ). We de�ne the (rigorouslyonstruted) ritial heterolini orbit �0;�(�) by �0;�(�) = �het(�; v�) with v� determined by A0;�.Moreover, we observe that �0;�(�) is suh that k�h;j(�)��0;�(�)k is exponentially small for � < 0;and jAj � A0;�j is also exponentially small, but nonzero. Note that �0;�(�) annot be symmet-ri, sine it remains exponentially lose toM+" for � > 0; this neessarily implies that p�0;�(0) 6= 0.Now assume that K 6= 0, i.e., that there exits at least one solution A = Aj 2 (0; 1) of (2.22), andthat (�; �; ;D) are suh that Wu(M�" ) and W s(M+" ) interset transversely, i.e., that  is notasymptotially lose to 1;2(�; �;D), the values at whih the saddle-node bifurations our(2.24). The above arguments imply that the heterolini orbit �0;�(�) � Wu(P�" ) \W s(M+" )with A0;� = Aj to leading order, exists and, by onstrution, that �0;�(0) 2 fq = r = 0g.By de�nition, the orbit �0;�(�) for � 2 (a; b) spans a urve ��0;�(a; b) � R 6 , and there is a 3-dimensional tube T �0;� � Wu(P�" ) around ��0;�(a; b) (for any �1 < a < b � 1) whih onsistsof all orbits �(�; v�; w�) �Wu(P�" ) with (v�;w�) so lose to (�A20;�; w�(�A20;�)) thatsup��� 12 �0;� k�(�; v�; w�)� �0;�(�)k < e� 1p" ;
where ��0;� = ��het;�(v�), the position of the jump mid-point of �0;�(�). The existene of T �0;�follows from the ontinuous dependene on the initial onditions of solutions of smooth ODEs(as (2.1) learly is); T �0;� de�nes an open neighborhood of ��0;�(a; b) for any �1 < a < b � 1in the relative topology of Wu(P�" ). Note that T �0;� ontains both orbits that jump away fromM+" O(p") lose to �0;�(� 12�0;�) { these are the orbits lose to �T �0;� that only remain lose toM+" up to � = � 12�0;�+O(1=p") { and orbits that are exponentially lose toM+" for arbitrarilylong `time' { the orbits that are lose enough to �0;�(�). Note also that the `seondary' jumpmid-points, i.e., the points at whih the orbits �(�; v�; w�) take o� again fromM+" , of all orbitsin T �0;� must be exponentially lose to the urve ��0;�(� 12�0;�;1), that is itself exponentially losetoM+" and is approximated, or represented, by a part of a solution urve of (2.11) { ompare toregion 3 in Figure 4 in whih the urve ��0;�(���; ��) is approximated.The tube T �0;� is strethed by the fast dynamis nearM+" into a 3-dimensional manifold that is nolonger exponentially small in the diretion of the fast unstable eigenvalue of M+" { see Remark2.2. In fat, T �0;� is exponentially lose and parallel to Wu(M+" ). Sine Wu(M+" ) intersetsW s(M�" ) transversely { whih an be shown by the same Melnikov-type arguments that estab-14



lished the intersetion of Wu(M�" ) and W s(M+" ) { it follows that T �0;� \W s(M�" ) exists as atwo-dimensional submanifold of T �0;�. We label this manifold as S�0;�; it onsists of a one-parameterfamily of orbits �(�; v�; w�) �Wu(P�" )\W s(M�" ), i.e., orbits in Wu(P�" ) that are homolinitoM�" . Sine T �0;� is exponentially lose to �0;�(�) for � � � 12�0;�, and sine �0;�(�) takes o� fromM�" at Wuslow(P�" ), it follows by the reversibility symmetry (2.2) that the orbits in S�0;� touhdown onM�" lose toW sslow(P�" ), the slow stable manifold of P�" inM�" that is spanned by `s;�v;w.The existene of the homolini orbit �h;j(�) is established if it an be shown that there isan orbit �(�; v�; w�) � S�0;� that indeed touhes down exatly on W sslow(P�" ). This result willfollow from another appliation of the reversibility symmetry. The above onstrution of thetwo-dimensional manifold S�0;� � Wu(P�" ) \ W s(M�" ), that is based on the heterolini or-bit �0;�(�) � Wu(P�" ) \W s(M+" ) and on the tube T �0;�, has a symmetri ounterpart in thetwo-dimensional manifold S+0;� � W s(P�" ) \Wu(M�" ), that is based on the heterolini orbit+0;�(�) �W s(P�" )\Wu(M+" ) and on the tube T +0;�. Note that by onstrution all orbits in S+0;�touh down (or: take o� in bakward `time') on W sslow(P�" ) �M�" . Thus, �h;j(�) exists if it anbe shown that S�0;� and S+0;� interset.To show this, we �rst note thatS�0;� \ S+0;� = T �0;� \ T +0;� �Wu(P�" ) \W s(P�" );sine orbits in T �0;� that are also in T +0;� � W s(P�" ) � W s(M�" ) must, by de�nition, lie insideS�0;�. Moreover, dim �S�0;� \ S+0;�� = dim �T �0;� \ T +0;�� = 1:Sine both S�0;� onsist of solutions of (2.1), the dimension of S�0;� \ S+0;� annot be zero, i.e.,S�0;�\S+0;� annot be a point. It also annot be two, whih would imply that the two-dimensionalsets S�0;� oinide. This is not the ase, sine S�0;� are, as subsets of T �0;�, strethed like T �0;�, thusS�0;� is parallel to Wu(M+" ) and S+0;� to W s(M+" ). Hene, we may onlude that we have provedthe existene of the (loally) uniquely determined homolini orbit h;j(�) �Wu(P�" )\W s(P�" ),if we have shown that T �0;� and T +0;� interset.This follows from the loal strething of the tubes T �0;� and T +0;� near M+" . To see this, weonsider the urves ��0;�(� 12�0;�; 12�0;�) and �+0;�(� 12�0;�; 12�0;�) that are assoiated to �0;�(�) and+0;�(�) (note that +0;�(�) jumps at +�0;� by (2.2)). By onstrution, ��0;�(� 12�0;�; 12�0;�) and�+0;�(� 12�0;�; 12�0;�) are exponentially lose to eah other and exponentially lose toM+" . The tubeT �0;� is strethed in the diretion of the fast unstable eigenvalue of M+" near ��0;�(� 12�0;�; 12�0;�)and is exponentially lose to Wu(M+" ), while T +0;� is strethed in the diretion of the fast stableeigenvalue of M+" near ��0;�(� 12�0;�; 12�0;�) and is exponentially lose to Wu(M+" ). Moreover,both 3-dimensional manifolds T �0;� extend to two sides { fu < 1g and fu > 1g { of M+" near��0;�(� 12�0;�; 12�0;�), sine they both ontain orbits that are asymptoti to M+" . Thus, T �0;� andT +0;� must have a nontrivial intersetion. This ompletes the proof for K > 0.Observe that the left hand side of (2.22) has at most one extremum for A 2 (0; 1), namely
A = ���D� �� 12 DD�1 ;see (2.25). Therefore, K annot be more than two.Finally, we briey onsider the situation in whih K = 0, i.e. in whih there is no solution15



A 2 (0; 1) of (2.22). In this ase, the ritial heterolini orbits �0;�(�) annot be onstruted,and it follows immediately that Wu(P�" ) \W s(P�" ) = ;. The saddle-node bifurations ourat the transition from K = 2 to K = 0 and must be loally unique by the C1-smoothness withrespet to " of the stable and unstable manifolds of M�" and P�" [8, 9℄. 2Remark 2.2 In [13, 14℄, the strething and squeezing assoiated to the passage of an invariantmanifold along a slow manifold are desribed by the Exhange Lemma. This lemma an be usedto study the deformation of Wu(P�" ) as it passes along M+" . Indeed, one may verify expliitlythat the sets of touh down points of the traked manifold on the slow manifolds are transverseto the ows on those manifolds. However, we have hosen for a somewhat more diret approahhere.
2.5 Expliit analysis of the number K of stationary one-pulse solutionsTheorem 2.1 above establishes that K � 2. In this setion, we arry out a straightforwardanalysis of the jump ondition (2.22) to derive expliit results for the number (K) of stationaryone-pulse solutions in (1.6) for a given set of parameters. The following lemma is an example; itis stated without proof.Lemma 2.2 Let (�; �; ;D; �; �; ") be suh that j�Dj > j�j. Then, for " > 0 small enough, and1;2 as given in (2.24), we have(a1) if sgn(�) = sgn(�), sgn() = sgn(�), and jj < j�+ �j, then K = 1.(a2) if sgn(�) = sgn(�), sgn() = sgn(�), and jj > j�+ �j, then K = 0.(a3) if sgn(�) = sgn(�) and sgn() 6= sgn(�), then K = 0.(b1) if sgn(�) = �1 = �sgn(�), �+ � > 0, and sgn() = �1, then K = 0.(b2) if sgn(�) = �1 = �sgn(�), �+ � > 0, and 0 <  < �+ �, then K = 1.(b3) if sgn(�) = �1 = �sgn(�), �+ � > 0, and �+ � <  < 1, then K = 2.(b4) if sgn(�) = �1 = �sgn(�), �+ � > 0, and  > 1, then K = 0.(1) if sgn(�) = �1 = �sgn(�), �+ � < 0, and  < �+ �, then K = 0.(2) if sgn(�) = �1 = �sgn(�), �+ � < 0, and �+ � <  < 0, then K = 1.(3) if sgn(�) = �1 = �sgn(�), �+ � < 0, and 0 <  < 1, then K = 2.(4) if sgn(�) = �1 = �sgn(�), �+ � < 0, and  > 1, then K = 0.(d1) if sgn(�) = 1 = �sgn(�), �+ � > 0, and  < 2, then K = 0.(d2) if sgn(�) = 1 = �sgn(�), �+ � > 0, and 2 <  < 0, then K = 2.(d3) if sgn(�) = 1 = �sgn(�), �+ � > 0, and 0 <  < �+ �, then K = 1.(d4) if sgn(�) = 1 = �sgn(�), �+ � > 0, and  > �+ �, then K = 0.(e1) if sgn(�) = 1 = �sgn(�), �+ � < 0, and  < 2, then K = 0.(e2) if sgn(�) = 1 = �sgn(�), �+ � < 0, and 2 <  < �+ �, then K = 2.(e3) if sgn(�) = 1 = �sgn(�), �+ � < 0, and �+ � <  < 0, then K = 1.(e4) if sgn(�) = 1 = �sgn(�), �+ � < 0, and  > 0, then K = 0.See also Figure 5, where we plotted (2.22) for ertain parameter ombinations. The left framerepresents the ases (b1) { (b4), the right frame (d1) { (d4).
3 Travelling pulse solutions
In this setion, we establish the existene of loalized one-pulse solutions to (1.6) that travel witha �xed, well-determined, speed. As in the previous setion, we will onstrut these pulses as16



homolini orbits �tr;j(�) to the ritial point P�" .
3.1 The formal onstrution of travelling one-pulse solutions, �tr;j(�)We introdue the moving oordinates � = x � "2t and, with a slight abuse of notation, set� = �=", so that (1.6) redues to the 6-dimensional dynamial system,8>>>>>><>>>>>>:

u� = pp� = �u+ u3 + "(�v + �w +  � p)v� = "qq� = "(v � u)� "3�qw� = "D rr� = "D (w � u)� "3D2 �r
(3.1)

with an additional parameter  for the speed of the travelling pulse. The struture of this equa-tion justi�es our hoie for the magnitude of  (= O("2)). With this saling, the perturbation ofthe fast (u; p)-subsystem indued by  is of the same order as the perturbations indued by theV;W -omponents in the U -equation of (1.6). Note that, unlike (2.1), (3.1) depends expliitly onthe parameters � and �. However, the ritial points of (3.1) are idential to those of (2.1) and,thus, given by (2.4).The fast redued system is idential to (2.5), as long as �; � � 1"3 , and is thus again governedby the Hamiltonian H(u; p) (2.6). For any  of O(1), system (3.1) possesses two invariant slowmanifolds and their assoiated stable and unstable manifolds, whih we denote, with a slightabuse of notation, by M�" and W s;u(M�" ). Although M�" depend on , the leading and �rstorder approximations of M�" are still given by (2.8) and (2.9), so that it again follows thatH(u; p)jM�" = O("2) (2.16).However, there are two signi�ant di�erenes between (3.1) and (2.1). First, (3.1) does nothave the reversibility symmetry of (2.1) for  6= 0. As a onsequene, we annot expet to �ndsymmetri pulses and, more importantly, we annot exploit the symmetry in the onstrution ofthe pulse and in the assoiated validity proof. However, system (3.1) does inherit the symmetry,� ! ��; p! �p; q ! �q; r ! �r and ! � ; (3.2)whih implies that the travelling pulses do not have a preferred diretion, i.e., to any pulsetravelling with speed  > 0, there is a symmetrial ounterpart that travels with speed  < 0.Seond, dd�H(u(�); p(�)) = "p(�v + �w +  � p) ; (3.3)instead of (2.14), whih implies that the Melnikov onditions will depend in an O(1) fashion on { whih also further validates our saling of the magnitude of the speed of the pulses.As in setion 2.2, we de�ne the position of the jump mid-points of �tr;j(�) to be ���, i.e.,�tr;j(�) rosses the hyperplane fu = 0g at � = ��� (�� > 0). The oordinates of the jumpmid-points are de�ned by �tr;j(���) = (0; p�� ; v�� ; q�� ; w�� ; r�� ): (3.4)Unlike the symmetri stationary ase, the oordinates of the jump through the fast �eld fromM�" to M+" , denoted by (p�� ; v�� ; q�� ; w�� ; r�� ), will di�er from those of the jump bak from M+"toM�" , denoted by (p+� ; v+� ; q+� ; w+� ; r+� ). Moreover, the middle of the pulse, �tr;j(0), has beome17



slightly arti�ial by this de�nition, in the sense that � = 0 does not in general orrespond to anextremum of any of the U -, V - or W -omponents in (1.6). Nevertheless, with this de�nition wean use the same partition of the homolini orbit �tr;j(�) into �ve regions { see Setion 2.2 {with I�f;s and I0s as in (2.13).We again use the Melnikov funtion to measure the distane between Wu(M�" ) and W s(M+" ).We �nd, assuming that �� = O( 1" ),��f H(v�� ; q�� ; w�� ; r�� ) = RI�f H�d�= RI�f "p0;�h (� + ��)��v�� + �w�� +  � p0;�h (� + ��)� d� +O("p")= 2" ��v�� + �w�� +  � 13p2�+O("p");where we have impliitly used that the slow oordinates (v; p; w; r) do not vary to leading orderduring a jump through the fast �eld, i.e., that��f v; ��f p; ��f w; ��f q = O(p") (3.5)(see 2.15)). Sine H(u; p)jM�" = O("2), we �nd as �rst Melnikov ondition,�v�� + �w�� +  = 13p2: (3.6)Sine there is no reversibility symmetry, the seond Melnikov ondition for the jump from M+"to M�" is slightly di�erent, �v+� + �w+� +  = �13p2 ; (3.7)whih follows from�+f H(v+� ; q+� ; w+� ; r+� ) = RI+f H�d�= RI+f "p0;+h (� + ��)��v+� + �w+� +  � p0;+h (� + ��)� d� +O("p")= 2" ��v+� + �w+� +  + 13p2�+O("p")(ompare p0;+h (�) to p0;�h (�) { (2.7)). Note that the jump onditions are onsistent with thesymmetry (3.2).We an proeed (formally) as in the stationary ase. We solve the (linear) slow subsystemsexpliitly, imposing boundary onditions like those in (2.18) at the boundaries of the three slowregions (1, 3, and 5) and also imposing the Melnikov onditions (3.6) and (3.7). Here, we presentthis analysis for the ritial ase �; � = O( 1"2 ), sine travelling pulses an only exist for these val-ues of � and �. More preisely, if both �; � � 1"2 , then the ows onM�" are symmetri to leadingorder and the only asymmetries in the onstrution of �tr;j(�) are introdued by the 's in theMelnikov onditions (3.6) and (3.7). From this, it follows that  = 0, i.e., that �tr;j(�) = �h;j(�),the stationary pulse { see Remark 3.1.Thus, we introdue �̂ and �̂ by �̂ = "2� � 1" ; �̂ = "2� � 1" :The ows on M�" and M+" are, up to orretion terms of O("3), given by� v�� = �"�̂v� + "2(v + 1) ;w�� = �" �̂D2w� + "2D2 (w + 1) ; and � v�� = �"�̂v� + "2(v � 1) ;w�� = �" �̂D2w� + "2D2 (w � 1) ;18
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see Figure 6. The eigenvalues ��v;w of the deoupled (v; q)- and (w; r)-subsystems are given by��v = 12 ���̂ �p2�̂2 + 4� ; ��w = 12 1D �� �̂D �q 2�̂2D2 + 4� ; (3.8)whih learly establishes the asymmetri harater of the ows onM�" (for �̂ ; �̂ 6= 0). The stableand unstable manifolds of P�" restrited to M�" are spanned by`u;�v = fq = �+v (�1 + v)g ; `u;�w = fr = D�+w(�1 + w)g ;`s;�v = fq = ��v (�1 + v)g ; `s;�w = fr = D��w(�1 + w)g ; (3.9)(ompare with (2.12)).Sine the slow (v; q; w; r)-oordinates do not vary to leading order during a jump through thefast �eld (3.5), we an `math' the solutions in the slow regions 1, 3, and 5 by imposing boundaryonditions as in (2.18). As in the stationary ase, there are more boundary onditions than freeparameters. Hene, there are relations between the oordinates of the jump mid-points,(v�� ; q�� ) 2 `u;�v ; (w�� ; r�� ) 2 `u;�w ; (v+� ; q+� ) 2 `s;�v ; (w+� ; r+� ) 2 `s;�w ; (3.10)as may be seen from the system geometry (see Figure 7). Furthermore,v�� = s�v �e�2"��v �� � 1�� 1 ; w�� = s�w �e�2"��w�� � 1�� 1 ; (3.11)with s�v = � 2��v��v � ��v < 0; s�w = � 2��w��w � ��w < 0: (3.12)(Note that (3.10) and (3.11) redue to their stationary equivalents (2.19) and (2.20) if either = 0 or �̂ = �̂ = 0 { see Remark 3.1.) We onlude that for any given pair (; ��), the(slow) oordinates (v�� ; q�� ; w�� ; r�� ) of the jump mid-points are uniquely determined by the aboveonditions ombined with the mathing onditions (3.5). Moreover, we have the following leadingorder approximations of the v- and w-omponents of �tr;j(�) in the slow regions (1, 3, 5),
vtr = 8><>: �2s�v e"�+v � sinh "�+v �� � 1 in 1,s�v e"�+v (����) + s+v e"��v (�+��) + 1 in 3,2s+v e"��v � sinh "��v �� � 1 in 5, wtr = 8><>: �2s�we"�+w� sinh "�+w�� � 1 in 1,s�we"�+w(����) + s+we"��w(�+��) + 1 in 3,2s+we"��w� sinh "��w�� � 1 in 5,19
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Figure 7: A shemati sketh of a travelling pulse �tr;j(�) homolini to P�" .
see Figure 7. The Melnikov onditions (3.6) and (3.7) impose two relations between  and ��,8<: 13p2 = ��s�v �e�2"�+v �� � 1�� 1� + � �s�w �e�2"�+w�� � 1�� 1� + � 13p2 = ��s+v �e2"��v �� � 1�� 1� + � �s+w �e2"��w�� � 1�� 1� +  : (3.13)
A pair of solutions (; ��) to (3.13) with  6= 0 orresponds formally to a homolini solution�tr;j(�) of (3.1) and thus to a pulse solution of (1.6) that travels with speed "2.
Remark 3.1 If �; � � 1"2 , i.e., if �̂ ; �̂ = 0 to leading order, then ��v = �1, ��w = � 1D , ands�v = s�w = �1, so that (3.13) redues to�13p2 = �A2 + �A 2D �  = 13p2;to leading order, with A as in (2.20). Hene,  = 0 and �tr;j(�) = �h;j(�) (2.22).
3.2 Existene theorem for travelling pulse solutions
Theorem 3.1 Let (�; �; ;D; �; �; ") be suh that � = �̂"2 , � = �̂"2 , and assume that (3.13) hasK solution pairs (j ; (��)j) with j 6= 0. Let " > 0 be small enough. If K = 0, then thereare no homolini orbits to P�" in (3.1) with  6= 0. If K > 0, there are K homolini orbits�tr;j(�), j 2 f1; : : : ;Kg, to P�" in (3.1) that have a struture as skethed in Figure 7 and thatorrespond to travelling one-pulse solutions of (1.6) whih travel with speed "2�j 6= 0, where�j = �j (") = j +O(").The proof of Theorem 3.1 is similar to that of Theorem 2.1 in Setion 2.4. Nevertheless, thereare di�erenes, espeially sine the proof of Theorem 2.1 strongly depended on the reversibilitysymmetry in (2.1). The proof is given in Setion 3.3.Generially, K an be expeted to be positive for open regions in the (�; �; ;D; �̂ ; �̂)-parameter20



spae. However, a priori, it is not lear whether parameter ombinations exist for whih K anbe non-zero. In fat, though (3.13) is a relatively simple expression, it an { of ourse { not besolved expliitly. Nevertheless, it an be evaluated, and the (open) region in parameter spaein whih K 6= 0 an be determined with a simple and reliable numerial proedure. Moreover,(3.13) an be approximated asymptotially in various limit settings. As an example, we onsiderthe ase �̂ = 1Æ � 1; �̂ = hÆ � 1;i.e., we assume that �̂ is large and �̂ is small, but both still O(1) with respet to ". We thusintrodue an arti�ial seond asymptoti parameter Æ that is independent of " suh that 0 < "�Æ � 1. We further assume that all other parameters, inluding h, are O(1) with respet to Æ.We searh for solutions (; ��) of (3.13) suh that > 0;  = O(1); X� = "Æ�� = O(1);with respet to Æ. Note that this implies that we look for homolini orbits that spend a long`time' (O( 1"Æ )) near M+" . It follows by a straightforward omputation from (3.11) that,v�� = �2e2X� (1+O(Æ)) + 1 +O(Æ); v+� = �1 +O(Æ); w�� = O(Æ); w+� = O(Æ); (3.14)so that (3.13) redues to13p2 = �v�� +  +O(Æ); �13p2 = ��+  +O(Æ):Hene, there exists a homolini orbit �tr;1(�) to P�" in (3.1) for � >  with = 1 = 32p2(�� ) +O(Æ; "); (3.15)Moreover, X�;1, and thus (��)1, an be determined through v�� and (3.14). By the symmetry(3.2), we onlude that K = 2 for �̂ � 1, �̂ � 1 and � > .
3.3 Proof of Theorem 3.1The onstrution of �tr;j(�) �Wu(P�" ) \W s(P�" ) �Wu(P�" ) \W s(M�" )is again based on a speial heterolini orbit ��;�(�) � Wu(P�" ) \ W s(M+" ), a tube T ��;� �Wu(P�" ) around it, their ounterparts in bakwards `time' +�;�(�) � W s(P�" ) \Wu(M+" ) andT +�;� �WS(P�" ), so that �tr;j(�) � T ��;� \ T +�;�.For any  > 0 (�xed),Wu(P�" ) is represented by the two-parameter family of orbits �P (�; v�� ; w�� ) �Wu(P�" ). We know by the Melnikov analysis that there is a one-parameter subfamily of orbits�het(�; v�� ) = �P (�; v�� ;w�� (v�� )) � Wu(P�" ) \ W s(M+" ), with w�� (v�� ) determined by (3.6).The orbits �het(�; v�� ) follow the slow ow on M+" , and it an be heked that those withv�� 2 (�1; S�v ) again ross the fq = 0g-hyperplane. Here, S�v is determined by the obser-vation that (v�� ; q�� ) 2 lu;�v in the (v; q)-subsystem on M�" (3.10), while (v�� ; q�� ) must be tothe left of ls;+v in the (v; q)-subsystem on M+" so that �het(�; v�� ) may ross through fq = 0g;a similar ondition must hold for (w�� (v�� ); r�� ) in the (w; r)-subows on M�" { see Figure 7.For eah v�� 2 (�1; S�v ) the intersetion of �het(�; v�� ) with fq = 0g ours by de�nition at� = ��het(v�� ) 2 (���; ��), and these intersetions de�ne a one-dimensional urve denoted byZ� = f(u�(v�� ); p�(v�� ); v�(v�� ); 0; w�(v�� ); r�(v�� )) = �het(��het; v�� )) : v�� 2 (�1; S�v )g; (3.16)21



see Figure 8, where one point on Z� is illustrated, sine v�� is �xed in the �gure. The urve Z�is by onstrution exponentially lose to M+" , and its projetion on M+" is given byZ�slow = f(1 + "u+1 (v�; 0; w�; r�); p+1 (v�; 0; w�; r�); v�; 0; w�; r�) : v�� 2 (�1; S�v )g;see (2.8).We perform the same onstrution in bakwards (spatial) time and de�ne the one-parameterfamily of orbits +het(�; v+� ) 2 W s(P�" ) \Wu(M+" ) by (3.7), the one-dimensional urve Z+ =f(u+(v+� ); p+(v+� ); v+(v+� ); 0; w+(v+� ); r+(v+� ))g � fq = 0g, and its projetion Z+slow on M+" .The (w; r)-omponents of Z�slow de�ne two urves, that typially interset, i.e., the ondition(w�(v�� ); r�(v�� )) = (w+(v+� ); r+(v+� )) determines for eah given  a disrete number of ritialvalues (v��;�(); v+�;�()). However, for general , the one-dimensional urves Z�slow and Z+slow donot interset within the 3-dimensional manifold M+" , i.e., v�(v��;�()) 6= v+(v+�;�()) in general.Nevertheless, the ombined ondition,(v�(v�� ()); w�(v�� ()); r�(v�� ())) = (v+(v+� ()); w+(v+� ()); r+(v+� ())); (3.17)in priniple determines disrete ritial values j of  for whih Z�slow and Z+slow interset (trans-versely) in M+" . It is a matter of straightforward alulations to show that (3.17) is equivalentto (3.13).The present onstrution is omputationally more umbersome than that of setion 3.1, but itsharater is more geometrial and it an thus be more easily extended into a validity proof. Todo so, we de�ne (for any ) the speial heterolini orbits ��;�(�; ) = �het(�; v��;�) � Wu(P�" ) \W s(M+" ) and +�;�(�; ) = +het(�; v+�;�) � W s(P�" ) \ Wu(M+" ). The tube T ��;�() � Wu(P�" )is spanned by those orbits �P (�; v�� ; w�� ) � Wu(P�" ) that are exponentially lose to ��;�(�; )for � < 12 (��� + ��het(v��;�)). Likewise, the tube T +�;�() � W s(P�" ) is spanned by those orbits+P (�; v�� ; w�� ) � W s(P�" ) that are exponentially lose to +�;�(�; ) for � > 12 (�� + �+het(v+�;�)). Inforwards `time', T ��;�() is strethed along Wu(M+" ), while T +�;�() is strethed along W s(M+" ) inbakwards `time'. By onstrution, the (strethed) tubes interset the 5-dimensional hyperplanefq = 0g in two-dimensional manifolds, Z�T () (by de�nition).The theorem is proved if it an be established that there are non-zero values of  for whih Z�T ()\Z+T () 6= ;, sine eah point in this intersetion determines a point inWu(P�" )\W s(P�" )\fq = 0g.To show this, we extend fq = 0g to a 6-dimensional spae, denoted by ffq = 0g; g, by adding  asan independent variable. This spae ontains the extended manifolds fZ�T (); g and fZ+T (); gas 3-dimensional subsets. Sine ��;�(�; ) and +�;�(�; ) are exponentially lose to M+" as theyinterset fq = 0g, and sine the projetions Z�slow and Z+slow interset by onstrution near  = jdetermined by (3.13), it follows that fZ�T (); g and fZ+T (); g are exponentially lose for  nearj . As in the proof of Theorem 2.1, it now follows from the fat that T ��;�() is strethed alongWu(M+" ) and T +�;�() along W s(M+" ), that { in the 6-dimensional spae ffq = 0g; g { the 3-dimensional manifolds fZ�T (); g and fZ+T (); g must interset transversely in disrete pointsthat have -oordinates �j ("), whih are to leading order determined by (3.13) or (3.17). Hene,Z�T () \ Z+T () = �tr;j(�) \ fq = 0g 6= ; at �j (") = j +O("). 2
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4 Bifuration from stationary to travelling pulse solutions
4.1 Leading order analysisTo investigate the nature of the bifuration from stationary one-pulse solutions to travellingone-pulse solutions, we start by onsidering the travelling pulse just after `reation', that is, weset  = Æ ; (4.1)with 0 < " � Æ � 1 (so  is no longer an unknown anymore). We expand the three unknowns,�̂ = �̂�;0+O(Æ) ; �̂ = �̂�;0+O(Æ) ; �� = ��;0+Æ��;1+O(Æ2). Notie that �̂�;0 and �̂�;0 determine thebifuration values of �̂ and �̂ at whih the bifuration ours, sine the speed of the bifuratingtravelling pulse redues to zero at �̂ = �̂�;0 and �̂ = �̂�;0. Sine the bifuration is o-dimensionone we expet to �nd a relation between �̂�;0 and �̂�;0.The eigenvalues (3.8) and (3.12) beome��v = �1� 12 �̂�;0Æ +O(Æ2); ��w = � 1D � 12 �̂�;0D2 Æ +O(Æ2) ;s�v = �1� 12 �̂�;0Æ +O(Æ2); s�w = �1� 12 �̂�;0D Æ +O(Æ2):We also expand the four equalities in (3.11), using A0 := e�"��;0 ,v�� = �A20 ��̂�;0Æ � 12 � 12A20 +A20 logA0�+ 2"��;1A20Æ +O(Æ2) ;w�� = �A 2D0 � �̂�;0D Æ � 12 � 12A 2D0 + 1DA 2D0 logA0�+ 2 "D ��;1A 2D0 Æ +O(Æ2) :Next, we substitute the above expansions into the jump ondition (3.13), and we reall that = Æ, to obtain8>><>>:  = �A20 + �A 2D0 (twie) ;13p2 = ��̂�;0 � 12 � 12A20 +A20 logA0�+ � �̂�;0D � 12 � 12A 2D0 + 1DA 2D0 logA0� ;0 = 4"��;1 ��A20 + �DA 2D0 � ; (4.2)
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Figure 9: For (�; �; ; ") = (3; 1; 2; 0:01), the bifuration point �̂�;0(�̂�;0) is plotted for D =2; 5; 10; 100. The value of the jump mid-point ��;0 is, respetively, 40:547; 47:018; 50:356; 54:393and is omputed through (4.2). When D = 1, we have ��;0 = 54:931 and �̂�;0(�̂�;0) = �̂�;0 =1:0460. This is the dotted line in the �gure.
where we equated oeÆients on O(1) and O(Æ) terms, respetively, and added and subtratedthe two O(Æ) equations. Note that the equation for A0 is idential to that of the stationaryone-pulse orbit (2.22): near the bifuration the width of the travelling pulse is to leading orderequal to that of the stationary pulse. Equations (4.2) determine the three unknowns A0 (whihgives ��;0), �̂�;0 as funtion of �̂�;0, and ��;1 = 0. The solution �̂�;0 as funtion of �̂�;0, is plottedin Figure 9 for several values of D.Remark 4.1 We briey onsider the ase of D large, i.e., D = O( 1Æ ). It immediately followsfrom (4.2) that ��;0 = � 12 1" log ���� �. (Here, we also have to assume that  > �; � > 0 or that < �; � < 0). Moreover,�̂�;0(�̂) = 23p2��� ( � �) + ( � �) log� � �� ���1 +O(Æ) :This �̂�;0 is analogous to the (�̂2)�;0 we �nd in the analysis for travelling pulses of the reduedtwo-omponent system (6.1) { see Setion 6.
4.2 Subritiality and superritiality of the bifurationTo determine the nature (superritial versus subritial) of the bifuration, see Figure 11, andalso for the stability analysis [11℄, we atually need the orretion terms up to and inludingthird order in Æ in the above alulations. To keep the alulations within reasonable limits, weset the bifuration parameter � equal to one, suh that in the above analysis the w-omponent issymmetri and has no higher order orretions, i.e., �̂ = 0 in (3.8), et. Note that � has also beenset to � = 1 in [18, 24, 25℄. Moreover, most of the numerial results presented in [2, 16, 19, 23℄ arefor � = 1. We also assume that �A20 + �DA2=D0 > 0, whih implies that the stationary one-pulselimit is not near a saddle-node bifuration and that it is stable [11℄.
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Figure 10: Left frame: (�; �;D) = (3; 1; 5). Right frame: (�; �;D) = (3;�1; 5). Note that wedid not plot �̂�;2 but a `saled' version �̂�;2=C. To be more preise, C = 332p2�(�̂�;0)4, and thesaling therefore depends on A0. However, C > 0 for A0 2 (0; 1). Thus, the saling does nothange the sign of �̂�;2. Moreover, note that the vertial asymptote (for � < 0) is exatly where�A20 + �DA 2D0 = 0 (A0 = A, see (2.25)). The last free parameter, , atually determines thevalue of A0 via (4.7). Thus for (�; �;D) = (3; 1; 5) it is possible to have a negative, as well as apositive �̂�;2.
Lemma 4.1 Let (�; �; ;D; �; �; ") be suh that � = O( 1"2 ); � = 1; � > 0, (2.22) holds, and�A20 + �DA2=D0 > 0, where A0 = e�"��;0 and 0 < " � 1. For  = Æ, with " � Æ � 1, a travellingpulse exists for � = 1"2 (�̂�;0 + Æ2�̂�;2 +O(Æ3)), with�̂�;0 = 23p2 1�(1�A20+A20 logA20) > 0 ;�̂�;2 = 332p2�(�̂�;0)4 �1�A20 +A20 logA20 � 13A20 log3A20 + �A40 log2A20(logA20�1)�A20+ �DA2=D0 � : (4.3)
Note that the sign of �̂�;2 determines the nature of the bifuration: a negative �̂�;2 yields asubritial bifuration, while a positive �̂�;2 yields a superritial bifuration. For given systemparameters, we an evaluate (4.3) to determine the sign of �̂�;2. Moreover, we observe that it ispossible for the same (�; �;D) for �̂�;2 to take on positive, as well as negative, values, dependingon  (via A0), as is illustrated in Figure 10.Proof. The proof onsists of an elaborate { but straightforward { asymptoti analysis of thejump onditions (3.13). Plugging in v�� ; w�� with � = 1 yields, to leading order in ",�(s�v (e�2"��v �� � 1)� 1)� �e�2 "D �� +  = �13p2 :After expanding the two unknown variables �̂ and ��,�̂ = �̂�;0 + Æ�̂�;1 + Æ2�̂�;2 + Æ3�̂�;3 +O(Æ4) ; �� = ��;0 + Æ��;1 + Æ2��;2 + Æ3��;3 +O(Æ4) ;we obtain the leading order approximations of (3.8) and (3.12),��v = �1 � 12 �̂�;0Æ +(� 18 �̂2�;0 � 12 �̂�;1)Æ2 +(� 14 �̂�;0�̂�;1 � 12 �̂�;2)Æ3 +O(Æ4);s�v = �1 � 12 �̂�;0Æ � 12 �̂�;1Æ2 �( 116 �̂3�;0 � 12 �̂�;2)Æ3 +O(Æ4): (4.4)
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With these expressions we dedue,e�2"��v �� = e�2"��;0 + e�2"��;0(�"�̂0��;0 � 2"��;1)Æ + e�2"��;0 [� 14"(�̂�;0)2��;0 � "�̂�;1��;0�"�̂�;0��;1 � 2"2�̂�;0��;0��;1 + 12"2(�̂�;0)2(��;0)2 + 2"2(��;1)2 � 2"��;2℄Æ2+e�2"��;0 �� 12"�̂�;0�̂�;1��;0 � "�̂2��;0 � 14"2(�̂�;0)3(��;0)2 + "2�̂�;0�̂�;1(��;0)2� 16"3(�̂�;0)3(��;0)3 � 14"(�̂�;0)2��;1 � "�̂�;1��;1 + 32"2(�̂�;0)2��;0��;1�2"2�̂�;1��;0��;1 � "3(�̂�;0)2(��;0)2��;1 � 2"2�̂�;0(��;1)2 � 2"3�̂�;0��;0(��;1)2� 43"3(��;1)3 � "�̂�;0��;2 � 2"2�̂�;0��;0��;2 + 4"2��;1��;2 � 2"��;3� Æ3 +O(Æ4) ;
(4.5)

and, e�2 "D �� = e�2 "D ��;0 � 2D"��;1e�2 "D ��;0Æ + e�2 "D ��;0 [ 2D2 "2(��;1)2 � 2D"��;2℄Æ2+e�2 "D ��;0 [� 43D3 "3(��;1)3 + 4D2 "2��;1��;2 � 2D"��;3℄Æ3 +O(Æ4) : (4.6)(Reall that "��;j = O(1).)Combining (4.4), (4.5), and (4.6), we �nd to leading order (twie)�A20 + �A 2D0 =  ; (4.7)whih agrees with the �rst equation in (4.2).The O(Æ)-orretions read� 12��̂�;0(1�A20 +A20 logA20) + 2"��;1(�A20 + �DA 2D0 ) = � 13p2 :By adding and subtrating the above two equations, we obtain��;1 = 0 ; �̂�;0 = 23p2 1�(1�A20 +A20 logA20) ;whih agrees with (4.2), sine �̂�;0 = 0. Note that the funtion 1�A20 +A20 logA20 is positive forall A0 2 (0; 1) { it dereases monotonially from one to zero as A0 inreases from zero to one.Sine � > 0 it follows that �̂�;0 > 0.At O(Æ2), we �nd0 = � 12��̂�;1(A20 � 1)� �A20[� 14"(�̂�;0)2��;0 � "�̂1��;0 + 12"2(�̂�;0)2(��;0)2 � 2"��;2℄� 12"�(�̂�;0)2��;0A20 + 2 �D"��;2A 2D0(sine ��;1 = 0). Subtrating the two equalities implies��̂�;1(1�A20 +A20 logA20) = 0 ) �̂�;1 = 0 :
Adding both terms yields ��;2 = 116 1" �A20(�̂�;0)2 logA20(logA20 � 1)�A20 + �DA2=D0 :
We note that logA20�1 < logA20 < 0 and �A20+ �DA2=D0 > 0, therefore, sgn(��;2) = sgn(�) = +1.Thus, the width of the pulse (2��) is larger than the leading order width (2��;0), i.e., the widthof the travelling pulse is larger than the width of the standing pulse.26



The O(Æ3)-term is given by0 = ��( 116 (�̂�;0)3 � 12 �̂�;2)(A20 � 1)� 12��̂�;0A20[� 14"(�̂�;0)2��;0 + 12"2(�̂�;0)2(��;0)2 � 2"��;2℄��A20["�̂�;2��;0 � 14"2(�̂�;0)3(��;0)2 + 16"3(�̂�;0)3(��;0)3 + "�̂�;0��;2 � 2"2�̂�;0��;0��;2 � 2"��;3℄+2 �D"��;3A 2D0 :Adding both terms implies ��;3 = 0, subtrating yields,�( 116 (�̂�;0)3 � 12 �̂�;2)(A20 � 1)� 12��̂�;0A20[� 14"(�̂�;0)2��;0 + 12"2(�̂�;0)2(��;0)2 � 2"��;2℄��A20["�̂�;2��;0 � 14"2(�̂�;0)3(��;0)2 + 16"3(�̂�;0)3(��;0)3 + "�̂�;0��;2 � 2"2�̂�;0��;0��;2℄ = 0 ;whih an be rewritten as0 = ��A20�̂�;0"��;2 logA20 + 148�A20(�̂�;0)3 log3A20 � 116�(�̂�;0)3(1�A20 +A20 logA20)+ 12��̂�;2(1�A20 +A20 logA20) :Then, using the expression for �̂�;0 and ��;2, we obtain�̂�;2 = 18(�̂�;0)3 � 132p2�A20(�̂�;0)4 log3A20 + 332p2�2A40(�̂�;0)4 log2A20(logA20 � 1)�A20 + �DA2=D0 ; (4.8)whih an be rewritten as in (4.3). 2For D large, we an analytially determine the sign of �̂�;2 in (4.3), as we now show.Corollary 4.2 Let (�; �; ;D; �; �; ") and A0 be as in Lemma 4.1 and assume that D = 1Æ with0 < "� Æ � 1. De�ne AZ0 2 (0; 1) as the (unique) solution of1�A20 +A20 logA20 + 23A20 log3A20 �A20 log2A20 = 0 (4.9)(AZ0 = 0:11063 : : :). Then, �̂�;2 > 0 for parameter ombinations suh that 0 < A0 < AZ0 + O(Æ)and �̂�;2 < 0 for 1 > A0 > AZ0 +O(Æ).Proof. It follows from (4.3) that, to leading order in Æ,�̂�;2jD=O(Æ�1) = 332p2�(�̂�;0)4[1�A20 +A20 logA20 � 13A20 log3A20 +A20 log2A20(logA20 � 1)℄= 332p2�(�̂�;0)4[1�A20 +A20 logA20 + 23A20 log3A20 �A20 log2A20℄ =: C�̂ 0�;2 ;with C = 332p2�(�̂�;0)4 > 0 and �̂ 0�;2 = 1 � A20 + A20 logA20 + 23A20 log3A20 � A20 log2A20. Thussgn(�̂2) = sgn(�̂ 02). We notie that �̂ 02(0) = 1 and �̂ 02(1) = 0. We now show that �̂ 02(s), withs := A20, has a negative minimum by di�erentiating,dds �̂ 02 = (log s)�23 log2 s+ log s� 1� :Thus, with z := log s (so that z 2 (�1; 0)), we see that �̂ 02(z) has a unique extremum if23z2+ z�1 = 0, i.e., z = zM = � 34 � 14p33. This implies that AM0 = e� 18 (3+p33) 2 (0; 1), so that�̂ 02(AM0 ) = 1� e� 14 (3+p33)�314 + 54p33� < 0:Hene, AM0 determines a negative minimum of �̂ 0�;2, whih implies �̂ 0�;2 must hange sign one forA = AZ0 2 (0; AM0 ), where AZ0 is determined by (4.9). 2An additional onsequene of Lemma 4.1, that holds for more general values of D, is27
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Figure 11: The solution urve of equation (3.13) in the (�̂ ; ) plane for the parameter values(�; �; ;D; �; ") = (5;�3; 1; 4; 1; 0:01). We have hosen the parameters in suh a fashion that theysatisfy the onditions in Remark 4.2. In the left frame we observe a subritial bifuration at�̂ = �̂�;0 = 6:01363. Moreover, we observe that as �̂ goes to in�nity the upperbranh, +(�̂), goesto the theoretially-predited, leading order value, 32p2(�� ) = 6p2, see (3.15). Finally, fromthis numerial ontinuation we observe that the two branhes merge at a saddle-node bifurationat �̂numSN = 0:84917 and numSN = 6:3027. In the right frame, the region near �̂ = �̂�;0 is magni�ed.
Corollary 4.3 Let (�; �; ;D; �; �; ") and A0 be as in Lemma 4.1. Furthermore, assume that� < 0, �D > ��, A0 > A > AZ0 (with A; AZ0 as in (2.25), (4.9), respetively), then thebifuration is subritial, i.e., �̂�;2 < 0.Proof. Observe that in this ase�A40 log2A20(logA20 � 1)�A20 + �DA2=D0 < A20 log2A20(logA20 � 1) < 0:
Therefore, �̂�;2(A0) < C�̂ 0�;2(A0), with �̂ 0�;2(A0) as de�ned above, and C�̂ 0�;2(A0) is negative forA0 > AZ0 . 2Remark 4.2 If, in addition to the onditions in Corollary 4.3, it is also assumed that � > ,then it follows from our analysis in Setion 3.2 that there is a travelling pulse with speed  =32p2(� � ) + O(Æ; ") > 0 for �̂ � 1 (3.15). This indiates that the urve  = (�̂) has a foldstruture, i.e., for inreasing �̂ (and all other parameters �xed) there is a saddle-node bifurationof travelling pulses at �̂ = �̂SN < �̂�;0 at whih two travelling pulses bifurate with speeds�(�̂) > 0 and �(�̂SN ) = SN > 0; the pulse assoiated to �(�̂) merges with the stationarypulse at �̂ = �̂�;0, while the other pulse exists for all �̂ > �̂SN , so that +(�̂) ! 32p2(� � ) as�̂ ! 1. This an be heked by using a ontinuation method for the solutions of (3.13), seeFigure 11. Hene, there exist parameter ombinations for whih two types of travelling pulsesoexist with the stationary pulse (for �̂SN < �̂ < �̂�;0). Both the stationary pulse and thetravelling pulse assoiated to +(�̂) may be stable [11℄.
5 Stationary two-pulse solutions
In this setion, we establish the existene of loalized, symmetri, standing, two-pulse solutionsof (1.6). We onstrut these pulses as homolini orbits �2p;j(�) to the ritial point P�" .28



5.1 The onstrution of �2p;j(�) homolini to P�"We searh for stationary pulse-like solutions. Therefore, the PDE (1.7) again redues to (2.1),and the basi observations (on the �xed points, the redued limits, the slow manifolds, et.) arethe same as in Setion 2.1. However, for symmetri standing two-pulse solutions, we have todistinguish nine di�erent regions instead of the �ve regions as we did for the one-pulse solutions{ see Setion 2.2. We again parametrize the two-pulse solutions so that its u; v; w-omponentsare at a loal extremum at � = 0. However, there are three loal extrema, see Figure 1, andfor symmetry onsiderations we hoose to put the zero of the �-axis at the seond loation, theone exponentially lose to M�" . It turns out that v�2p;j(0) and w�2p;j(0) are loal minima, whileu�2p;j(0) is a loal maximum, see Figure 1 and Figure 12. We de�ne the four `jump mid-points'of �2p;j by ��1;2� (not to be onfused with the ��;1; ��;2 of the previous setion). Where the last`bak' (i.e., the �nal jump of M+" bak to M�" ) of �2p;j(�) rosses the fu = 0g-hyperplane at� = �1� , and the last front of �2p;j(�) rosses the same hyperplane at � = �2� . Note that byonstrution 0 < �2� < �1� . The reversibility symmetry implies that ��1� is the jump mid-point ofthe �rst front and ��2� is the jump mid-point of the �rst bak. Thus,�2p;j(��1�) = (0;�p1�; v1�;�q1�; w1�;�r1�) ; �2p;j(��2�) = (0;�p2�; v2�;�q2�; w2�;�r2�) : (5.1)We assume that �1� , �2� , as well as �1� � �2� , are large, i.e., �1;2� and �1� � �2� are O( 1" ). We nowde�ne the four fast intervals I2;4;6;8f and the �ve slow intervals I1;3;5;7;9sI2;4f := ���1;2� � 1p" ;��1;2� + 1p"� ; I6;8f := ��2;1� � 1p" ; �2;1� + 1p"� ; I1s := ��1;��1� � 1p"i ;I3;7s := h��1;2� + 1p" ;��2;1� � 1p"i ; I5s := h��2� + 1p" ; �2� � 1p"i ; I9s := h�1� + 1p" ;1� :The nine di�erent regions are then1: The dynamis take plae exponentially lose to the slow manifold M�" : � 2 I1s .2: The dynamis take plae in the fast �eld: � 2 I2f .3: The dynamis take plae exponentially lose to M+" : � 2 I3s .4: The dynamis take plae in the fast �eld: � 2 I4f .5: The dynamis take plae exponentially lose to M�" : � 2 I5s .6: The dynamis take plae in the fast �eld: � 2 I6f .7: The dynamis take plae exponentially lose to M+" : � 2 I7s .8: The dynamis take plae in the fast �eld: � 2 I8f .9: The dynamis take plae exponentially lose to M�" : � 2 I9s .The analysis of the formal onstrution is now nearly the same as for the standing one-pulse ase(Setion 2.2); the only di�erene is that it involves a bit more bookkeeping. However, qualita-tively, nothing hanges; for example we still have �2;4;6;8f (v; w; q; r) = O(p"), the equivalent of(2.15). The homolini v; w-omponent on the slow manifolds are still governed by (2.10) and(2.11). Together with the usual boundary onditions, of whih there are in total forty, we get
v2p(�) =

8>>>><>>>>:
2e"� �sinh �"�1��� sinh �"�2���� 1 in 1�e�"(�+�1�) � e"(���1�) � 2e"�(sinh ("�2�)) + 1 in 3�e�"(�+�1�) + e�"(�+�2�) + e"(���2�) � e"(���1�) � 1 in 5�e�"(�+�1�) � e"(���1�) � 2e�"�(sinh ("�2�)) + 1 in 72e�"� �sinh ("�1�)� sinh ("�2�)�� 1 in 9 ; (5.2)
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and likewise
w2p(�) =

8>>>><>>>>:
2e "D � �sinh � "D �1��� sinh � "D �2���� 1 in 1�e� "D (�+�1�) � e "D (���1�) � 2e "D �(sinh ( "D �2�)) + 1 in 3�e� "D (�+�1�) + e� "D (�+�2�) + e "D (���2�) � e "D (���1�) � 1 in 5�e� "D (�+�1�) � e "D (���1�) � 2e� "D �(sinh ( "D �2�)) + 1 in 72e� "D � �sinh ( "D �1�)� sinh ( "D �2�)�� 1 in 9 : (5.3)

By the reversibility symmetry (2.2), there are two Melnikov onditions (instead of the expetedfour), whih are analogous to (2.17),�v1;2� + �w1;2� +  = 0 ; (5.4)with v1;2� and w1;2� de�ned in (5.1). When we de�ne A1 := e�"�1� and A2 := e�"�2� (0 < A1 <A2 < 1), and ombine this with the above results (5.2),(5.3), and (5.4), we obtain8<: ��A21 + �A1A2 � �A1A�12 � �A 2D1 + �A 1D1 A 1D2 � �A 1D1 A� 1D2 +  = 0+�A22 � �A1A2 � �A1A�12 + �A 2D2 � �A 1D1 A 1D2 � �A 1D1 A� 1D2 +  = 0 : (5.5)
By adding and subtrating, this system an be transformed into8<: G1(A1; A2) := �(A1 �A2)2 + �(A 1D1 �A 1D2 )2 = 0G2(A1; A2) := �(A22 �A21)� 2�A1A�12 + �(A 2D2 �A 2D1 )� 2�A 1D1 A� 1D2 = �2 : (5.6)
The above formal analysis gives rise to the following theorem.Theorem 5.1 Let (�; �; ;D; �; �; ") be suh that (5.6) has K solution pairs (A1; A2) with 0 <A1 < A2 < 1. Let " > 0 be small enough. If K = 0, then there are no homolini orbits to P�"in (2.1) that have a struture as skethed in Figure 12. If K > 0, there are K homolini orbits�2p;j(�), j 2 f1; : : : ;Kg, to P�" in (2.1) (with struture as in Figure 12). These orrespond tosymmetri standing two-pulse solutions of (1.6).Given the form of equations (5.6), it is natural to solve A1 and  as funtion of A2 and the systemparameters �; � and D. In Figure 13, both A1 and  are plotted. Note also that G1(A1; A2)annot vanish in (5.6) if sgn(�) = sgn(�). Thus, there only exist homolini 2-pulse solutions ifsgn(�) 6= sgn(�) { see setion 6.Proof of Theorem 5.1 A symmetri standing two-pulse �2p;j(�) is reversible (2.2) and wean therefore argue along the same lines as in the proof of Theorem 2.1. In fat, the proof ofthis theorem goes in essene very similar to that of Theorem 2.1. Therefore, we will omit mostdetails. By the �rst Melnikov ondition in (5.4), there exists a one-parameter family of orbits1;�het (�; v1�;w1�(v1�)) 2Wu(P�" ) \W s(M+" ). We de�ne the tube T �1;� �Wu(P�" ) as the olletionof orbits in Wu(P�" ) that are exponentially lose to 1;�het (�; v1�;w1�(v1�)) for � < ��1� . All orbitsin T �1;� approah M+" and follow the slow ow on M+" for some `time' (whih may be in�nite),after whih they take o� parallel (and exponentially lose to) Wu(M+" ). In other words, nearM+" T �1;� is strongly strethed along the diretion of Wu(M+" ). It thus follows by the appli-ation of the seond Melnikov ondition in (5.4) that T �1;� intersets W s(M�" ); the intersetionT �1;� \ W s(M�" ) is again two-dimensional, i.e., it onsists of a one-parameter family of orbits� Wu(P�" ) \W s(M�" ). As in the proof of Theorem 2.1, it an now be shown that there is aunique orbit 2;�0;� (�) � T �1;�\W s(M�" ) that is homolini toM�" suh that 2;�0;� (0) 2 fq = r = 0g{ note that this also determines the position of the symmetry point � = 0. Again, the algebra30
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Figure 12: A shemati sketh of a symmetri two-pulse �2p;j(�) homolini to P�" .
leading to the onstrution of 2;�0;� (�) is equivalent to the above analysis and yields at leadingorder (5.6). The existene of the 2-pulse homolini orbits �2p;j(�) now follows by arguments thatare idential to those in Theorem 2.1. It is based on the onstrution of the sub-tube T �2;� � T �1;�around 2;�0;� (�), its symmetrial ounterpart T +2;� around the orbit 2;+0;� (�) and the appliation ofthe reversibility symmetry. 2Remark 5.1 In the proof presented above we have used that the jump mid-points v1;2� and w1;2�satisfy ertain onstraints. In partiular, v1� 2 (�1; 0), w1� = � 1� (�v1� + ), v2� 2 (v1�; V ) andw2� = � 1� (�v2� + ), where V = � �1�+�2�2 � 12" log �1� e�2"�2� + e�"(�1�+�2�)�. These onstraintsarise naturally from the requirement that the traked orbits lie on the orret side of the stableand unstable manifolds of the slow manifold, so that they an have a seond pulse.Remark 5.2 In our analysis we have foused on the existene of loalized one- and two-pulsepatterns. As for instane in [6℄, the same geometrial approah as in the proofs of Theorems2.1, 3.1 and 5.1 an be applied to establish the existene of many other kinds of stationary ortravelling patterns, suh as N -pulse solutions and various kinds of spatially periodi wave trains.We refrain from going into the details here. However, we do notie that these patterns an bestable and do play an important role in the dynamis of (1.7) { see setion 7.1 and espeiallyFigure 15.
5.2 The existene of two-pulse solutionsJust as was the ase for the K of Theorem 2.1, it is, a priori, not lear whether there exist pa-rameter ombinations for whih the K of Theorem 5.1 is non-zero. To show that these parameterregimes do exist we �rst hoose an expliit D as an example, that is, we put D = 2. Naturally,we also have to assume sgn(�) 6= sgn(�). With this speial hoie of D we analyze (5.6). Ittransforms into( H1(A1; A2) := �(A1 �A2)2 + �(pA1 �pA2)2 = 0H2(A1; A2) := �(A22 �A21)� 2�A1A2 + �(A2 �A1)� 2�qA1A2 = �2 : (5.7)
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Observe that the equality H1(A1; A2) = 0 does not depend on . Moreover,  only appears inthe right hand side of H2(A1; A2) = �2. That is,  only shifts H2(A1; A2) up or down. So,instead of solving for A1 and A2 in terms of the unknown parameters �; � and , it is muheasier to �x �; � and A2 and to determine A1 and  suh that (5.7) is solved. Atually, by doingso, we impose, alongside � and �, one of the jump mid-points �2� and try to loate the seondjump mid-point �1� and  suh that (1.7) possesses a standing two-pulse. Of ourse, we ouldalso hoose to start with �; �, and A1 and determine A2 and  that satisfy (5.7).The zero of H1(A1; A2), for whih 0 < A1 < A2, is given by the relationpA1 +pA2 =p��=� : (5.8)When we implement this into formula (5.7) for H2(A1; A2) we �nd, after some manipulation, aunique : = �� 2�(1 +A22)r� ��A2 � � 1 + 3A2 + 1A2 �r�A2�� �r� ��A2! : (5.9)However, there are also restritions on the hoie of A2. We need 0 < A1 < A2 < 1. Therefore,�14 �� < A2 < min����; 1� : (5.10)We onlude that if A2 satis�es (5.10), there is a (�; �; )-parameter ombination suh that (5.7)is satis�ed, i.e., suh that a two-pulse solution exists. However, if (5.10) annot be satis�ed {whih is the ase when j4�j < j�j, there are no suh two-pulse solutions.This nonexistene result an be generalized to all D > 1:Corollary 5.2 Let sgn(�) 6= sgn(�). There is an open region in (�; �; ;D)-spae for whihhomolini two-pulse solutions as desribed in Theorem 5.1 exist. However, if j�jD2 < j�j, thenthere are no suh two-pulse solutions.Proof. We start again by observing that G1(A1; A2) = 0 does not depend on , and that the in G2(A1; A2) = �2 only shifts G2(A1; A2) up or down. So, again instead of solving A1 and A2in terms of �; � and  via (5.6), we solve this equation for given �; � and A2 with the unknownparameters A1 and .The ondition 0 < A1 < A2 < 1 yields the following generalization of (5.10)�� ��D2� 12 DD�1 < A2 < min(����� 12 DD�1 ; 1) : (5.11)Here, the latter inequality ensures A2 2 (0; 1), and the former implies A1 < A2. This interval isempty when j�jD2 < j�j. 2
5.3 Asymptotis for D !1In this setion, we analyze the large D asymptotis of solutions of equation (5.6). From Figure 13,we observe that, over a large portion of the interval A2 2 (0; 1), the solution urves for A1 lienear the axis, and the solution urves for  lie near the lower dashed urve. Moreover, theseurves approah their respetive asymptotes as D inreases. We establish this result preisely inthe following lemma: 32
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Figure 13: In the left frame, A1 is plotted as funtion of A2 for several values of D. In the rightframe,  is plotted as funtion of A2 for the same values for D. The dashed urve representsthe asymptoti behavior for D large and is given by (5.12). The two-pulse orbits are typiallyreated or annihilated in a saddle-node bifuration { see Setion 7, Figure 15.
Lemma 5.3 Assume that � > 0 >  > �. Then, for stritly O(1) values of A2 2 (0;p��=�), asmeasured with respet to the asymptotially small parameter 1=D, the solutions A1 = A1(�; �;A2; D)and  = (�; �;A2; D) of equation (5.6) satisfy, to leading order,

A1 = �1�r���A2�D ;  = �� r��� �A2!2 as D !1: (5.12)
The lower dashed urve in the right frame of Figure 13 is this parabola of  as funtion of A2.It is also useful to ombine the results of (5.12) of this lemma into expressions for A1 and A2 interms of the given system parameters. The result is, to leading order,A1 = ���D2 ; A2 =r��� �r� � :We also remark that in both frames there is a boundary layer at A2 = A1, whih is why werequire A2 to be stritly of O(1) for this result and we reall that the existene onstrutionrequires that A1 < A2. In the boundary layer, the graph of A1 limits on the diagonal, with aslope of �1, while the graph of  is nearly vertial. Although the asymptoti analysis is nottoo involved, we refrain from going into the details here. Nevertheless, we notie that, by (5.6), = �+ � in the limit A2 # A1, see Figure 13.Proof of Lemma 5.3 We observe that, for A2 stritly of O(1) in (0,1), we may assume thatA1 = CD ; (5.13)to leading order, for some C 2 (0; 1). Indeed, if one instead assumed that A1 = aÆ� to leadingorder, for Æ = 1=D and for some � > 0, then from the �rst equation in (5.6) one would �nd thatA2 = 0 to leading order, whih is a ontradition. Hene, with the assumption (5.13), the �rstequation in (5.6) beomes �A22 + �(C � 1)2 = 0;to leading order, where we used thatA1=D2 = 1+O(1=D) forA2 2 (0; 1), and that (1=D) log(A2)�C. Solving, one �nds, to leading order,A1 = �1�r���A2�D ; (5.14)
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whih is preisely the �rst formula of (5.12).With the asymptotis for A1 in hand, one may use the seond formula in (5.6) to �nd theasymptotis for . To leading order, = �12 "�A22 + � 1� �1�r���A2�2!� 2� �1�r���A2�# :Simplifying the right member, we �nd preisely the asymptoti result (5.12) for . 2To onlude this setion on the large D asymptotis, we omment briey on the form of theW pro�le for stationary two-pulse solutions in the interval between the two pulses. From theabove asymptotis, we �nd, to leading order,"� = O(1) ; "�2� = � logA2 = O(1) ; "�1� = �D log�1�r���A2� = O(D) : (5.15)Hene, from (5.3), we �nd in region 5, to leading order,w2p(�) = �e� "D (�+�1�) + e� "D (�+�2�) + e "D (���2�) � e "D (���1�) � 1= 2q���A2 � 1= 1� 2q � : (5.16)
Therefore, for eah A2 2 (0;p��=�), the W -omponent is onstant to leading order, where theonstant is given by (5.16). Moreover, we observe thatW takes on all of the values in the interval(�1; 1), sine the above analysis applies for all A2 2 (0;p��=�).A stability analysis similar to that presented in [11℄ shows that the two-pulse solutions are stablefor parameter ombinations in the `boundary layer'. However, they are unstable for parametervalues near the dashed urve in the asymptoti regime studied in Lemma 5.3.
6 The two-omponent model
In this setion, we investigate the two-omponent (U; V )-subsystem of the three-omponentmodel, that is, we send D to in�nity and assume that the W -omponent is onstant at W = �1everywhere in the PDE (1.6). The PDE model redues to� Ut = "2Uxx + U � U3 �"(�2V + 2)�2Vt = Vxx + U � V ; (6.1)with the same assumptions as before, 0 < " � 1; 0 < �2 � 1="3 and �2; 2 2 R . Note thatthe notation for the parameters has the following orrespondene with the parameters of thethree-omponent model: �2 = �; �2 = � and 2 =  � �.It an be shown with the same tehniques used in this artile that for �2 = O(1) the two-omponent system has standing one-pulse solutions homolini to P�2;" = (u�2;"; 0; u�2;"; 0) withu�2;" = �1 + 12"(�2 � 2) +O("2) if there exists an A 2 (0; 1) satisfying�2A2 = 2 +O(p") ;reall (2.22). Hene, we immediately observe that neessary onditions for a standing pulse ho-molini to P�2;" to exist are that sgn(�2) = sgn(2) and 0 < j2j < j�2j. Also, the existene of34



travelling pulse solutions to P�2;" for large �2 an be proved, and in the end it boils down to solvinga system of equations whih is a simpli�ation of (3.13). Moreover, when we inrease �2 from anO(1)-parameter to an O("�2)-parameter a travelling pulse solution bifurates from a standingpulse solution at (�2)0;� = 1"2 (�̂2)0;� = 1"2 23p2��2 � 2 + 2 log � 2�2��. This bifuration an besuperritial, as well as subritial. See also Setion 4 and espeially the proof of Lemma 4.2.Finally, the two-omponent system possesses no symmetri standing two-pulse solutions to P�2;".Physially, this an be explained by the fat that the model has too few free onstants (too fewdimensions). The absene of two-pulse solutions is also plausible when we look at Theorem 5.1.There only exists a standing two-pulse solution if at least sgn(�) 6= sgn(�) and for the two-omponent system this ondition annot be ful�lled beause there is no equivalent parameter for� in the two-omponent system.To summarize, we have shown that the two-omponent model also possesses stationary andtravelling pulse solutions. However, it does not support two-pulse solutions.Remark 6.1 There are two ways in whih the three-omponent system (1.6) may limit on atwo-omponent system, either by onsidering W ! V , assoiated to D # 1, or by W ! W0,a onstant when D ! 1. In the former ase one has to make the additional assumption that� = �. Sine in most studies of systems like (1.1)/(1.6) D � 1 and � � �, we do not onsiderthis limit here.If one onsiders the limit D ! 1 in Theorems 2.1 and 3.1 for one-pulse solutions, then itimmediately follows that W ! �1 uniformly on R { see for instane (2.21). However, sinethe two-omponent limit annot have standing two-pulse solutions, taking the limit D ! 1 inTheorem 5.1 is less straightforward. In fat, this limit has already been disussed in setion 5.3(under the assumption that A2 = O(1)). It follows from (5.15) that the width of the pulsesin the two-pulse solution inreases linearly with D, while the distane between the pulses ap-proahes a �nite limit. Thus, on bounded intervals, the two-pulse solution of the three-omponentsystem limits on a one-pulse solution of a two-omponent (U; V )-system that is homolini to(U; V ) = (+1;+1) (with W ! 1� 2p=�, the onstant value given in (5.16)).
7 Simulations, onlusions and disussion
7.1 SimulationsIn this setion, we show the results of some numerial simulations to further illustrate the theorypresented in this artile and also to illustrate some of the basi pulse interations and instabilities.These simulations are arried out using the numerial software presented in [1℄.We already illustrated a stationary one-pulse solution in the left frame of Figure 1. Therefore,we begin here with some travelling pulses of the type onstruted in Setion 3. The pulses shownin Figure 14 exist for values of � greater than the theoretially-predited value �̂�;0 = 0:59 for thebifuration in whih travelling pulses are reated (whih translates into an unsaled ��;0 = 59). Inthe left frame, the travelling pulse ollides with its mirror image pulse at the boundary, sine theboundary onditions are of homogeneous Neumann type, and afterwards they repel eah other.By ontrast, in the right frame, the pulse and its mirror image ollide and then annihilate. Thehangeover from repulsion to annihilation after the ollision ours at �numann = 112. Finally, weobserve that the numerially-observed value of the bifuration to travelling waves is �num� = 103,
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Figure 14: Stable travelling pulses. The parameter values are (�; �; ;D; �; ") = (6; 3; 4; 2; 1; 0:1),and � is the bifuration parameter. Here, we plotted a bouning travelling pulse solution for� = 110 and an annihilation of a travelling pulse for � = 115 .
whih is within the relative error of magnitude O(1=") = O(10) of the leading order theoretialvalue ��;0 = 59. Of ourse, in these simulations " is not yet really small, and hene we hekedthat the value of �num� dereases toward the value predited by the leading order theory as "is dereased. For example, for " = 0:01, we �nd �num� = 5:95� 103 (ompared to 5:9 � 103theoretially).Next, we illustrate the theoretial results for stationary two-pulse solutions of (1.6), as derivedin Setion 5. For eah of the four values of  = 0:8; 0:75;�0:25;�0:3, Figure 15 shows the orre-sponding stationary solution. Based on the simulations for these parameter values, we �nd thatthe homogeneous bakground state U = �1 undergoes a subritial bifuration into a two-pulsesolution at num = 0:78. Likewise, due to the reversibility symmetry, the homogeneous stateU = +1 bifurates superritially into a two-pulse solution at num = �0:78, though we do notshow this. In addition, we observe that, as we derease  from 0:78, the width of the pulsesinreases, until there is a bifuration at num = �0:27 at whih the pulses oalese, and thesolution is U = +1 everywhere, exept inside an interior layer and inside the layers at the bound-aries of the omputational interval. This solution is a spatially periodi solution. Moreover, theobserved value for this oalesene of the pulses agrees well with the theoretially-predited valueof  = �0:31 for the saddle-node bifuration, whih ours at the minimum in the urve shownin the right frame of Figure 13.One of the most ommonly-enountered bifurations that the pulse solutions undergo is a super-ritial Hopf bifuration in whih the widths, and heights, of the pulses osillate periodially intime. In Figure 16, we show a breathing one-pulse in the left frame, and a breathing two-pulsein the right frame. For the one-pulse solution (with " = 0:1), the Hopf bifuration ours at�numH = 47. Moreover, we �nd that the breather dies out for � = 49:8. For the two-pulse solution(with " = 0:01), the Hopf bifuration takes plae at �numH;2p = 4590. Moreover, at � = 5060, the
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breathing two-pulse solution beomes unstable and dies out. We note that we have observedbreathing two-pulse solutions for whih the pulse widths breath in an antisymmetri manner.Sattering of pulses is also observed in the three-omponent model (1.7). In the left frame of Fig-ure 17, we show the V -omponent of a two-pulse solution in whih the pulses initially approaheah other, spend a substantial amount of time at a nearly onstant distane from eah otherwith a signi�antly-dereased amplitude, and then regain their original amplitudes and repeleah other. The pulses ontinue to repel eah other until they reet o� the boundary, and theproess repeats. A similar phenomenon has been observed in [16, 17℄. There the unstable, sta-tionary two-pulse, whih the two-pulse data approahes, is alled a `sattor' (or `separator'). Theimportane of a sattor stems from the observation made in [16, 17℄ that the forward evolutionof two-pulse data that approahes it is determined by where that data lies with respet to thestable and unstable manifolds of the sattor or separator solution. The relation between sattorsand the two-pulse solutions onstruted in this artile is the subjet of future investigation.We emphasize that the time interval shown in Figure 17 is long and that the length of timewhere the two pulses are near to eah other is also long in omparison to the time interval overwhih the pulses move an O(1) distane. Moreover, we found that the duration of this timeinterval an be hanged by varying the parameter values. Finally, it is worth noting that, duringthe time that the two pulses are near the boundaries, they are also near their ounterparts arossthe boundary, in what also appears to be a sattor state.
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To onlude this brief setion illustrating some of the pulse dynamis, we show the spatio-temporal evolution of four-pulse initial data in Figure 18. Initially, the four pulses approah eahother. Then, they start to breath in a time-periodi manner, until �nally the middle two pulsesdie out and the two remaining pulses beome stationary. In the right frame, we have zoomedin on the time interval ontaining the last few breathing periods, and here the destabilizationproess is visible in detail. The maximal widths per period of the inner two pulses inrease asthe time of annihilation gets loser and loser, while the minimal widths derease. One an seethat during the �nal osillation the maximal pulse widths exeed the lengths of the gaps betweenthe pulses. Finally, stepping bak out to the time sale shown in the left frame, one sees that thetime asymptoti state is a stable two-pulse solution of the type onstruted in Setion 3, withpulse enters well inside � = �1000 and � = 1000 on the domain � 2 [�2000; 2000℄.
7.2 Conlusions and disussionIn this artile, we established the existene of stationary and travelling one-pulse solutions of thethree-omponent model (1.6), as well as the existene of stationary two-pulse solutions. The mainresults are presented in Theorem 2.1, Lemma 2.2, and Theorem 3.1 for the one-pulse solutions,and in Theorem 5.1 for the two-pulse solutions. Moreover, we studied various bifurations of thesesolutions, inluding the saddle-node bifuration in whih the stationary one-pulse solutions arereated (see Theorem 2.1), the bifuration from stationary to travelling one-pulses (showing thatthis may be either subritial or superritial depending on the system parameters, see Lemma4.1 and Corollary 4.2), and the saddle-node bifuration of two-pulse solutions, see Figure 13.In the ourse of this analysis, we also showed that this three-omponent system onstitutes anideal system on whih to study pulse dynamis. On one hand, it is suÆiently simple for analysisusing geometri singular perturbation theory, with all of the reation terms, exept for one, being
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linear. On the other hand, it is suÆiently nonlinear to support rih pulse dynamis. Indeed, theextent of this rihness was �rst demonstrated in [16, 17, 19, 23℄, and these interating pulse solu-tions exist also for the saled equations (1.6) studied here. We think that the analysis presented inthis work o�ers a useful starting point for the analysis of these various pulse interation senarios.Finally, we onsidered the limit in whih the three-omponent system (1.6) redues to the morelassial two-omponent system (6.1). This two-omponent system is almost the same as theFitzHugh-Nagumo equations, exept that the seond speies (inhibitor) also di�uses here. Itis shown that the two-omponent system possesses only the one-pulse solutions, and not thetwo-pulse solutions of the type studied here. Hene, the addition of the third omponent, asintrodued in [23℄, is essential for the existene of two-pulse solutions.Stability of the solutions studied here is an important topi, as is demonstrated for instaneby the bifurations to breathing pulses shown in Figure 16. This is the topi of a ompanionpaper [11℄, in whih we use the Evans funtion and the NonLoal Eigenvalue Problem method[3℄ to arry out this analysis.The methods and analysis of this artile an be extended to arry out the analysis of pulsesolutions in the three-omponent model with heterogeneity that is studied in [25℄. There, het-erogeneity is introdued in (1.1) by making the onstant term in the U -omponent vary in spaeaording to a smoothed out step funtion. The heterogeneity indues interesting new pulse dy-namis, suh as rebounding o� defets, pinning by defets, and penetration of defets, as observedin numerial simulations. The invariant manifold theory from the �eld of geometri singular per-turbation theory that we have used in this artile, as well as the Melnikov onditions that weused, an also be applied to these types of heterogeneous systems, so that the pulse solutionsmay be onstruted. In onjuntion with these observations, we point to an earlier example inwhih geometri singular perturbation theory was used to establish the existene of standing wavesolutions in a RD model of the Fabry-Perot interferometer, whih involves spatially-dependentoeÆients. See [22℄.
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