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Abstract

In this article, we analyze the three-component reaction-diffusion system originally developed
by Schenk, Or-Guil, Bode, and Purwins in PRL 78, 3781-4 (1997). The system consists of
bistable activator-inhibitor equations with an additional inhibitor that diffuses more rapidly
than the standard inhibitor (or recovery variable). It has been used by several authors as
a prototype three-component system that generates rich pulse dynamics and interactions,
and this richness is the main motivation for the analysis we present. We demonstrate the
existence of stationary one-pulse and two-pulse solutions, and travelling one-pulse solutions,
on the real line, and we determine the parameter regimes in which they exist. Also, for
one-pulse solutions, we analyze various bifurcations, including the saddle-node bifurcation
in which they are created, as well as the bifurcation from a stationary to a travelling pulse,
which we show can be either subcritical or supercritical. For two-pulse solutions, we show
that the third component is essential, since the reduced bistable two-component system
does not support them. We also analyze the saddle-node bifurcation in which two-pulse
solutions are created. The analytical method used to construct all of these pulse solutions
is geometric singular perturbation theory, which allows us to show that these solutions lie
in the transverse intersections of invariant manifolds in the phase space of the associated
6-dimensional travelling wave system. Finally, as we illustrate with numerical simulations,
these solutions form the backbone of the rich pulse dynamics this system exhibits, including
pulse replication, pulse annihilation, breathing pulses, and pulse scattering, among others.

Keywords: three-component reaction-diffusion systems; one-pulse solutions; travelling pulse
solutions; two-pulse solutions; geometric singular perturbation theory; Melnikov function.
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1 Introduction

Spatially-localized structures, such as fronts, pulses and spots, have been found to exhibit a wide
variety of interesting dynamics in dissipative systems. These dynamics include repulsion, anni-
hilation, attraction, breathing, collision, scattering, self-replication, and spontaneous generation.
The richness of the observed dynamics typically increases with the complexity and the size of the
system. Localized structures, that do not exist in reaction-diffusion (RD) systems with a small
number of components, may readily exist when more components and more terms are added to
the system. Likewise, solutions that are unstable in small or simple RD systems may become
stable with such additions.

The aim of this article is to report on the mathematical analysis of a paradigm example that
exhibits this increased richness. In particular, we study the three-component model introduced
in [23] and studied further in [2, 16, 18, 19, 24, 25]. In one space dimension, the equations are

Ut = DUUzz + f(U) — HgV — H4W + K1
ow, = DwyW,, + U-W.

where we used the notation of [16] and we note that (1.1) has the reversibility symmetry z — —z.
Here, the (U, V')-subsystem is a classical, bistable two-component RD system, which exhibits dy-
namics similar to the classical FitzHugh-Nagumo equations (although here Dy # 0, whereas
Dy =0 in FHN), and the variable W denotes an added inhibitor component. We will show that
it is responsible for increasing the richness of the types of solutions the model possesses.

In (1.1), U,V, and W are real-valued functions of x € R and ¢t € R", and the subscripts in-
dicate partial derivatives. The parameters 7 and 6 are positive constants, and the primary
interest is in using 7 as the bifurcation parameter. The diffusivities of the respective components
are denoted by Dy, Dy, and Dy, f(U) is a bistable cubic reaction function (often taken to be
f(U) =2U — U®), k3 and k4 denote reaction rates, and x; denotes a constant source term.

The fundamental discovery reported in [23] is that, in this three-component model, the added
component W can stabilize stationary and travelling single spot solutions and multi-spot solutions
in two space dimensions, which otherwise are inherently unstable in the classical two-component
(U, V)-bistable model. This stabilization was shown to occur when Dy is sufficiently large rel-
ative to Dy and Dy, because then the presence of W prevents spots from extending in the
directions perpendicular to their directions of motion. In this manner, W suppresses the insta-
bility that spots undergo in two-component systems [23].

The dynamics of pulses in the one-dimensional model (1.1) is also known to be richer than
in the corresponding one-dimensional version of the two-component model. Pulses collide, scat-
ter, annihilate, among others, as has been shown in [16, 17], whereas the dynamics of pulses
in the restricted two-component system is much less rich. A special class of unstable two-pulse
solutions, called scattors or separators, is identified for (1.1) in [16, 17]. It is shown that their
stable and unstable manifolds organize the evolution in phase space of all nearby solutions. More
precisely, during the course of a collision between two pulses, they converge to a separator state,
and the location of the initial data relative to the stable and unstable manifolds of this separator
determines how and when the pulses scatter off each other. Furthermore, in some parameter
regimes, the scattering process may be directed by a combination of two separators, where the
colliding pulses first approach one separator, spend a long time near it, and then approach a
second separator state, and then finally repel or annihilate, see [16, 17].

Our work is inspired by the results from [23, 19] and [16, 17]. We carry out a complementary,



rigorous analysis of the existence of certain pulse solutions for a scaled version of the three-
component model, see (1.6) below. The model has a rich geometric structure that will be studied
using geometric singular perturbation theory, and we note that the application of this theory is
challenging due to the fact that the associated ordinary differential equations are 6-dimensional.

1.1 Statement of the model equations

In [2, 16, 18, 19, 23, 24, 25], the numerical values of the diffusivities of the three species differ by
several orders of magnitude. For example, in [16], the values are Dy = 5x 107¢, Dy, = 5 x 1075,
and Dy = 1072, Therefore, we are motivated to introduce a scaled spatial variable

T

VDy

For computational convenience we also scale out the factor two in the nonlinearity f(U) =
2U — U3. Therefore, we introduce

T =

(1.2)

t=2t, (U,V,W)=2532UV,W), (%0)=2r0), (F,Fks k)= 21(3v2k1,n3,k4). (13)

In terms of these scaled quantities, the system (1.1) is

Uf = 620:5555 + [2—[23—1%3‘7—1%4W+I%1
Vi o= Viz + U=V (1.4)
QWE = D2Wjj + U-W,

with the nondimensional diffusivities ¢? = Dy /(2Dy) < 1 and D? = Dy, /Dy > 1.

As to the parameters in the reaction terms, the numerical values that are used in [16] are
(K1, k3, ka) = (—7,1,8.5), and very similar values are used in [23]. While these are O(1) with
respect to e, it is helpful to first study the system with O(g) values of these parameters; i.e., to
introduce scaled parameters, as follows:

k1 = —ev, k3 = ea, k4 = €8, (1.5)

where «, 3, and v are O(1) quantities and where we have taken r; to be negative, since it is
negative in all of the above cited articles.

The rationale for this choice of scalings (1.5) is threefold. First, this choice was made to facilitate
the mathematical analysis, since in this regime the terms in the U-equation corresponding to the
source and to the coupling from the inhibitor components are weak, yet not too weak. In fact,
the effects of the source and the coupling terms are too weak when they are of O(¢?) [5]. Second,
it turns out that much of the rich pulse dynamics exhibited by system (1.4) exists also when the
parameters have O(e) values, as we will show in this article (see also [20]). Therefore, one might
reasonably hope to understand the origins of the dynamics observed in [16] by beginning with
the present analysis. Third, in the numerical simulations of [23, 16], which were done on bounded
domains, the W variable stays near —0.8, approximately. Hence, in a very approximate (and
rough) sense one might argue, as follows, that there is an effective impact of the parameters in the
U-equation of (1.4) that is of O(e). Since &3 = 0.5 and ¢ = 5/5 ~ 0.22, the effect of V in this
equation can indeed be considered to be O(g). Moreover, by the scalings (1.3), #4W — & ~ 0.07
for W = —0.8 (and k1,4 as in [16]), which is clearly also O(e). Thus, it appears that the impact
of the source and coupling terms are indeed small.
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Figure 1: Stable stationary one-pulse and two-pulse solutions of system (1.6) obtained via
numerical simulation. For the one-pulse the system parameters where (o, f8,v,D,T,0,e) =
(3,1,2,5,1,1,0.01), and for the two-pulse we had («, 8,v, D, 1,0,¢) = (2, —1,-0.25,5,1,1,0.01).

In light of the above scalings, the model equations that we study are

Uy = €W,y + U-U3—e(aV+BW +7)
oW, = D*W,, + U-W,

where we dropped the tildes. Furthermore, we require that 0 < e < 1,0 < 7,0 < 1/¢®, D > 1,
and «,fB,7 € R, where the upper bound on 7 and 6 is derived in Section 3.1. Moreover, we
assume that the solutions (U(z,t),V (z,t), W(x,t)) are bounded over the entire domain.

At various stages throughout the analysis, we will see that it is also useful to examine the
three-component model in a stretched (or ‘fast’) spatial variable £ = x/e:

U, = Uege + U—-U3—e(aV +BW +7)
Vi = LV + U-V (L.7)
oW, = ZWee + U-W.

We refer to this system as the fast system, and to system (1.6) as the slow system.

The system (1.6) or (1.7) is well-suited as a paradigm for the analysis of three-component RD
systems. On the one hand, it is sufficiently nonlinear and complex so that it supports a rich
variety of localized structures, and on the other hand it is sufficiently simple, with linear reaction
functions in the second and third components and with linear coupling, so that much of the
dynamics can be computed analytically, including certain bifurcations. See also [11]. In this
respect, we believe that the results presented here also provide a basis to establish a theory of
interacting pulses in this paradigm model.



1.2 Outline of the main results

We begin in Section 2 with examining the stationary, or standing, one-pulse solutions. For
these solutions, the U-component consists of a front, which connects the (quiescent) state U =
—14 O(e) to the (active) state U = 1 4+ O(¢), and a back, which provides the opposite connec-
tion, concatenated together to form a pulse (or homoclinic orbit). Both the front and the back
are sharp, so that the pulse is highly localized, due to the asymptotically small value of €2 in
(1.6). The V-component of the one-pulse solutions consists of a smooth pulse that is centered
on the middle of the interval in which the U-component is in the active state and that varies
over slightly wider interval than the U-pulse. Finally, the W-component also consists of a single,
smooth pulse, but it varies on a wider interval than either of the other two components due to
the fact that D > 1. See Figure 1. The standing one-pulse solutions are formally constructed
in Section 2.2. Then, we make this construction rigorous in Theorem 2.1, which states that the
three-component model (1.6) possesses standing one-pulse solutions whenever the system param-
eters satisfy (2.22). See Section 2.3 for the statement of this theorem and Section 2.4 for its proof.

Next, we analyze the existence of travelling one-pulse solutions. This analysis, presented in
Section 3, follows the same two-step procedure: we first construct solutions formally (see Sec-
tion 3.1) and then we prove their existence rigorously (see Sections 3.2 and 3.3). The main result
is Theorem 3.1, which states that there exist travelling pulse solutions whenever either 7 or 6 (or
both) is O(1/¢?) and the system parameters satisfy (3.13).

Given these results about standing and travelling one-pulse solutions, it is of interest to in-
vestigate the bifurcation of the former into the latter. We do so in Section 4. The leading order
results are given by (4.2) in Section 4.1, and then the rigorous, high-order asymptotics for the
main bifurcation parameter 7 as a function of the other parameters is summarized in Lemma 4.1,
see Section 4.2. It turns out that this bifurcation can be supercritical, as well as subcritical, de-
pending on the parameters, see Corollaries 4.2 and 4.3. This result contrasts with the bifurcation
result for the two-dimensional version of this model, obtained in [19], where it was shown that
this bifurcation is supercritical.

Having completed our analysis of the one-pulse solutions, we next turn our attention to two-
pulse solutions of (1.6). The main result is Theorem 5.1, which guarantees the existence of
two-pulse solutions whenever the system parameters satisfy (5.6). These two-pulse solutions
have U-components that consist of two copies of the U-component of the single pulses, while the
V- and W-components exhibit two peaks as well, but are not near equilibrium in the interval
between their two peaks. See Figure 1. In this sense, the interaction between the pulses is semi-
strong, according to the terminology of [3]. We also note that the pair of equations (5.6) is rather
complex, and we present investigations of it when D = 2, and when D is general. Moreover, we
give the asymptotics of the key quantities as D — 0o. See Sections 5.2 and 5.3, respectively.

After completing the analysis of these pulse solutions, we examine in Section 6 the two-component
(U, V)-subsystem, obtained from (1.6) by setting W constant at —1. This analysis of the two-
component system enables us to make observations about the differences between the two-
component and the three-component systems. For instance, for the two-pulse solutions, we
observe that the inclusion of the third component is essential, because the two-component ver-
sion of the model cannot possess two-pulse solutions. Simply put, there is not enough freedom
in the two-component model to permit for the construction of these solutions, and our analysis
reveals why the third component — which naturally makes the phase space of the associated ODE
problem 6-dimensional — creates sufficient space/freedom for their existence.

In Section 7.1 we present the results of a series of numerical simulations of (1.6). These simula-



tions confirm the various analytical existence and bifurcation results presented herein, and they
also reveal the presence of rich pulse interactions, including pulse reflection and annihilation,
stable breathing single and double pulses (which bifurcate from stationary pulse solutions), pulse
scattering, as well as combinations of these. See Figures 14-18. The single and double pulses an-
alyzed in this article are key building blocks to understand these rich pulse interactions. Finally,
in Section 7.2, we summarize our analysis and discuss some related items.

Remark 1.1 The two-pulse solutions constructed in [7, 10] for the FHN system differ in several
respects from those constructed here. In FHN, these are essentially copies of the one-pulse
solution, that must be very far apart, and that exhibit oscillatory behavior in the interval between
the pulses. The mechanism responsible for their existence is related to the classical Shilnikov
mechanism.

Remark 1.2 Other examples of stabilization via the inclusion of an additional component in a
model are given for instance by the Gray-Scott and Gierer-Meinhardt systems. In these, one-
pulse (homoclinic) solutions that are unstable with respect to the scalar RD equation for the
activator component are stabilized in certain parameter regimes by the coupling to the equation
for the inhibitory component. The diffusive flux of inhibitor into the pulse domains helps to
localize the activator concentration, hence stabilizing one-pulse solutions, and we refer to [3, 4]
for the mathematical analysis using the Evans function and the stability index. Moreover, it is
is worth noting that the converse may also arise; namely in [5] it is shown that stable fronts of a
bistable, scalar RD equation are destabilized through coupling to a second component when the
parameters are chosen so that either the essential spectrum approaches the origin or an eigenvalue
emerges from the essential spectrum and becomes unstable.

2 Stationary one-pulse solutions

2.1 Basic observations

First, we look at stationary pulses of system (1.7), i.e., we put (U, V;,W;) = (0,0,0). By
introducing p = ug, ¢ = %vg and r = %wg, we transform system (1.7) into a 6-dimensional
singular perturbed ordinary differential equation (ODE)

u§ = D

pe = —u+ud+e(aw+pfw+7)

ve = &q

G = e(v—u) (2.1)
wg = pT

re = H(w—u).

Although ¢ is the spatial variable, it will play the role of ‘time’ in our analysis. The system
possesses two symmetries

§——&p——p,q——qr——r

2.2
U—= —Up—> =P,V =V, = —¢ W—>—W, T — =T, Y= —7. (2:2)

Note that the first symmetry corresponds to the reversibility symmetry (z,£) — (—z, —¢) in
(1.6), (1.7), respectively. The fixed points of system (2.1) have p=qg=7r =0, and u = v = w
with u® +u(—1+¢e(a + B)) + &y = 0. Solving this last equation yields

1
ut ::|:1:F§e(a+,8:|:'y)+(’)(s2), ud = ey + O(e?). (2.3)



Figure 2: The phase portrait of the fast reduced Hamiltonian system (2.5).

Hence, there are three fixed points,

P = (uF,0,uZ,0,uZ,0), P° = (u2,0,u°,0,u°,0). (2.4)

) g ¥ € ’ ) g9

It can be checked [11] that P*

[

states of the PDE (1.6),(1.7).

respectively PO, represent stable, respectively unstable, trivial

The fast reduced system (FRS) is obtained by letting € | 0 in (2.1),

u P

as well as (ve, ge, we,7¢) = (0,0,0,0), ie., (v,q,w,r) = (Vi, @, Wx, rx) With vy, g, wy, 7 € R
constants. The fixed points of the FRS are given by (u,p) € {(£1,0),(0,0)}. The former are
saddles. The latter, (0,0), is a center that corresponds to P? and thus to an unstable trivial
state of (1.6) — we will therefore not consider it.

We define the 4-dimensional invariant manifolds M by
MZE = {(u,p,v,q,7,w) € RE :u = +1,p =0},

which are the unions of the saddle points over all possible vy, g«, wy, 7« € R. Planar system (2.5)
is integrable with Hamiltonian

Hu,p) = 3 (0° +2) — 3(u* +1), (26)

which is chosen such that H(u,p) = 0 on MZ. The FRS possesses heteroclinic orbits (ug’i(g),pg’i(g))
that connect the fixed points (u,p) = (£1,0) to (u,p) = (F1,0),

WO = Franh (VB ) L (O = Fyvasect? (V2. (2.7

See Figure 2. The manifolds Mg are normally hyperbolic, and they have 5-dimensional stable
and unstable manifolds W“’S(Moi) that are the unions of the four-parameter (vi, gy, Ws, ry)-
families of one-dimensional stable and unstable manifolds of the saddle points (u,p) = (£1,0) in
(2.5).

Fenichel’s first persistence theorem [8, 12, 15] implies that for £ small enough, system (2.1)
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Figure 3: The flow generated by the (v, q)-subsystem on M_ and that of the (w,)-subsystem
on MZ. Note that stable/unstable manifolds I*'** and [%*7T have the same slopes.

has locally invariant slow manifolds MZ which are O(g) C'-close to M, i.e., MZ can be
represented by
./\/IEi ={u=41+ 6uf(v,q, w,TiE),p = spf(v,q,w, re)}, (2.8)

where the graphs u; and p; can be computed by an expansion in ¢,
1
ME={u=+1- 56(041)+,6’w+7)+0(62),p= 0(e?)}. (2.9)

The application of Fenichel’s second persistence theorem establishes that MZ have 5-dimensional
stable and unstable manifolds, W*%*(MZ), that are O(g) C'-close to their ¢ = 0 counterparts
W*s(MZ). Observe that the critical points P+ have 3-dimensional stable and unstable mani-
folds W**(PX) which are contained in W**(MZ).

There are two slow reduced limit systems (SRS), both of which we write in terms of the fast
variable &: one that governs the flow on M7,

{ vee = (252(11 +1+0(¢)), (2.10)
wee = %(w—&—l—i—(’)(a)),
and one that governs the flow on M7,
{ vee = &(v—1+0()), (2.11)
wee = pr(w—1+0(e)).

Observe that (v,q,w,r) = (£1,0,£1,0) + O(¢) are saddle points on MZ that correspond to
the fixed points PF (2.4). Also note that the v- and w-equations are decoupled, so that both
ODEs can be considered separately. See also Remark 2.1. Hence, we have a (v, q)-subsystem
and a (w, r)-subsystem, both with two saddle points. These four saddle points each have one-

dimensional stable and unstable manifolds, [*$*, that are given to leading order by

tor = {g=F1+o}, p* = {r=Fl+uw}, (2.12)
3t = {g=+1-v}, T = {r==+1-w}. :

In Figure 3, we sketch some orbits on the manifolds MZ.

2.2 The construction of one-pulse solutions v, ;({) homoclinic to P

In this section, we consider symmetric standing one-pulse solutions =, j(f) that are homoclinic
to P.. Here, we present the formal derivation. Then, in section 2.3, we formulate a theorem



based on this analysis — Theorem 2.1, and we prove this theorem in Section 2.4. This proof also
establishes the validity of the asymptotic analysis in this section. Note that orbits homoclinic to
the other fixed point P." can be obtained from these orbits by application of the symmetries (2.2).

Before we start with the construction of Yh i (€), we introduce some notation. From Figures
1 and 4, we notice that there are five different regions, three in which the leading order spatial
evolution is given by the SRS (2.10) and (2.11), and two regions that are governed by the FRS
(2.5). Since the PDEs are translation invariant, we may parametrize the pulse solution so that
its u, v, w-components are at a local extremum at { = 0, i.e., p, ;(0) = g;, ;(0) =7}, ;(0) =0 -
we will find that v, ;(0) and wj, ;(0) are maxima, while w,, ;(0) is a (local) minimum. Moreover,
we introduce &, as the position of the jump mid-point(s)’, more precisely &, is such that v, ;(¢)
is half-way between the two slow manifolds at { = &, i.e., u; ; = 0 at { = £, (2.2). We will
find that &, = (9(%), but at this point of the analysis it is still undetermined. Next, we define

the two ‘fast intervals’ ij and the three ‘slow intervals’ IF, 19,

I (e - Lott ) = (- Let L),
Iy = (oo~ — L] 0= [6+ - ] IF = 6+ doo)

Note that the choice of the width for I?E of 2/4/¢ is standard, but arbitrary. We can now give a
more precise definition of the five regions mentioned above (see Figure 4).

(2.13)

1: The dynamics take place exponentially close to the slow manifold M_: £ € I .
2: The dynamics take place in the fast field: € € Iy

3: The dynamics take place exponentially close to MT: & € IO,

4: The dynamics take place in the fast field: £ € I]T.

5: The dynamics take place exponentially close to M_: £ € I .

By definition,
Yhj = (u}:,ﬁpf:,j’ Vp, 51 9p, 50 wf:,j’r;,j) e WH(PZ)NW?3(PS) C WH*(MZ) NWHMT),
while the jump mid-points are defined by
’Y}:’j(if*) = (0, FPs; Vs FGss W, FT)-

Furthermore, since 7, ;(£) remains exponentially close to MT for € € 1D, vy, ;(€) is also exponen-
tially close to W*(P=) N W (MZ) and to W#(P.) N W% (MZ) for sufficiently long time. Note
that 7, ;(§) ¢ W*(MZ) N W*(MT) or WH(MT) N W*(MZ), since it has to be able to jump
back again from MT to M_ .

By considering possible take off and touch down points of jumps through the fast field and
by studying, in fact explicitly solving, the slow flows on M_ (2.10) and on M7 (2.11), we obtain
relations between the coordinates (v., Fg«,ws, Fri) of the jump mid-points and their spatial
positions +¢, that uniquely determine the homoclinic orbit(s) -, ;(£); see Remark 2.1.

For e # 0, the Hamiltonian H(u,p) (2.6) is not conserved

e H(u(€),p(€)) = wug+ppe —ulug
up +p (—u+ud +e(av+ Bw +7)) — u®p (2.14)
= eplaw + pw+7).



Figure 4: A schematic sketch of a standing pulse solution Vi, j(E) in the six-dimensional
(u,p,v,q,w,r)—phase space. In region 1, the pulse is exponentially close to M_ for a long
‘spatial time’ and approaches P as { — —oo. It ‘takes off’ from M7 at £ = —&, — % (by
definition) and ‘jumps’ through the fast field (£ € I;) towards MZ — this is region 2. In region
35 Y j (€) touches down near MY at £ = —&, + ﬁ and remains exponentially close to MT until
E=¢& — ﬁ, from where it jumps back towards M_, which defines region 4 (¢ € I]}") In the
final region, 5, Y, j(‘f) is again exponentially close to M_ and approaches P." as & — co. See

also Figure 1 in which v, ;(§) exhibits the same structure.

Since (uy, ;(€),p;, ;(§)) must be O(e)-close to the heteroclinic solution (uy ™ (€),pY " (€)) (2.7) of
the FRS (2.5) in the fast field I, the total change in H for an orbit v, ;(§) that jumps from
M_ to M7 is approximated by

A;H(U*,q*,w*’r*) = fI;Hgdf
= [ e (€ + &) (v + B +7)dE + O(eVE)

e(avs + Bw, +7) [Z2 py~ (€)dE + O(ey/E)
= 2e(av, + Bw. +7) + O(eV/e),

|

where we have used (2.7), (2.14), and assumed that &, = O(1). Note that A% H in principle
depends on (vy, G«, Wy, 7« ), the slow (v, g, w, r)-coordinates of the jump mid-points, and that these
coordinates do not vary to leading order during a jump through the fast field,

Ajv= [rvedf = [;-eqdf =2q.ve + O(e) = O(Ve),

Ajg= [;-qedé = [i-e(v - u)df =20/ + O(e) = O(VE),
Ajw= fI; wedé = fI; £rdé = 2r, 5/ + O(e) = O(Ve),
Arr= fI; redé :fI; £(w—u)dé = 2w, 5/ + O(e) = O(\/z) .

(2.15)

10



On the other hand, such an orbit v, ;(£) cannot have a total change of more than O(e?) over a
jump through the fast field I, , since

H(U,p)|M5i = % <(:|:1 — %S(CY’U 4+ ﬂw + ’Y) + 0(62))2 + 0(62)2>
—1 ((ﬂ — Le(av + Bw +7) +(’)(62))4+1> (2.16)
= 1 fe(av+Bu+9) — £ delav+ Buw+7) — 1+ O(2) = O(?),

where we recall (2.8), (2.9). Thus, we conclude that for an orbit -, ;(§) that jumps from MZ
to M7 the following relation for the slow (v., gs, Wy, r«)-coordinates of the jump mid-point must
hold to leading order

vy + Pw, +v=0. (2.17)

Note that AJIH (s, @, Ws, 74) 1s in fact a Melnikov function that measures the distance between
W*(MZ) and W#(MT) as they intersect the {u = 0} hyperplane (see [21, 3, 5]). Condition (2.17)
determines the 3-dimensional set of initial conditions in {u = 0} that defines the 4-dimensional
intersection of the two 5-dimensional manifolds W*(M_ ) and W*(MJ) (recall that the phase
space is 6-dimensional and that the p-coordinates of these initial conditions are necessarily O(¢)
close to py~ (0) = V2 (2.7)).

By the reversibility symmetry (2.2), we know that (2.17) also must hold for the (vi, —qs, W, —7)-
coordinates, which are the coordinates of the jump mid-points of the orbits that jump from M7

to M7 near £ = &,.

Next, we study the slow flows on MZE. The equations (2.10) and (2.11) for these flows are
linear and decoupled, thus we may solve for v and w separately. Based on the above analysis, we
write down the following boundary conditions for the solutions in regions 1, 3, and 5:

vh(00) = —1, wa(=&+ ) vn (e F 2) ve + O(ve),
m(Feo) = 0, a(-&+p) = —al&Fp) = @ +O0(E),
_ r) 5y (2.18)
wp(fo0) = —1 wn(-&£7) = wl&Fz) = wet OV,
m(fo0) = 0, m(=&EF) = -mEFFH) = r+0VE),

see Figures 1 and 4. Note that there are more (boundary) conditions than free parameters in the
general solutions of (2.10) and (2.11). As a consequence, we find that both v, and g., as well as
w, and r,, must be related,

Qe =V +1, 7y = w, + 1, (2.19)

which in geometrical terms is equivalent to (v.,q.) € €%, and (w,,r.) € €%~ (2.12), see also
Figure 3. Moreover, (2.18) yields additional relations between v, and &, and between w, and &,,

v, = —A%, w, = —AB where A=e %", (2.20)

Observe that, since & > 0, A € (0,1), so that v,,w, € (=1,0). For (vs, qs, ws,7«) and &, that
satisfy (2.18), (2.19) and (2.20), we obtain the explicit (slow) solutions,

2e*¢sinheé, —1 in 1, 2eb¢sinh £¢, —1 in 1,
vp(§) = —2e C-coshe€+1 in3, w(f)=< —2e D% cosh5{+1 in3, (2.21)
2¢ *¢sinhef, — 1 in 5, 2¢ 5ésinh 56, —1 in5

to leading order in ¢. Thus, together with the Melnikov condition (2.17), the boundary conditions
(2.18) imply three relations between vy, w,, and &,. These relations combine into the following

jump condition on A, ,
aA? + BAD =~y + O(Ve). (2.22)
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A solution A € (0, 1) of this equation uniquely determines the jump mid-points (v, Fqx, Wx, Fry)
in phase space of a homoclinic solution Vi i (), as well as their spatial positions +¢, (2.20).

Remark 2.1 We comment briefly on the coupling between the V- and W-components and on
the related fact that the homoclinic orbits are isolated. In the PDE (1.7), the variables V' and
W seem to be only coupled through the equation for U. In the construction of Vh, j(ﬁ), this
coupling induces the Melnikov condition (2.17) and gives a natural relationship between the v,-
and w,-coordinates of the jump mid-points. However, we observe that there is an additional
geometrically-induced coupling between these two components that is not directly obvious from
the equations. In particular, the jump mid-points &, must be the same for both the v- and w-
components in (2.1), which implies that also the ‘time-of-flight’ along the slow manifolds must be
the same for both the v- and w-components, since the parametrizations of all of the components
of a homoclinic orbit y;, ;(§) are of course the same. Hence, from among the entire one-parameter
set of pairs (v,,w,) that satisfy the Melnikov condition (2.17), a unique pair, with v, = —(—w,)”
(2.20), is selected by this ‘time-of-flight’ constraint. Together, the two constraints determine the
values of v, and w, uniquely and thus establish that the homoclinic orbits are isolated.

2.3 Existence theorem

Based on the analysis of the previous section, we can formulate the following existence result:

Theorem 2.1 Let (o, 3,7,D,7,0,¢) be such that (2.22) has K solutions A; € (0,1) (K €
{0,1,2}), and let € be small enough. If K =0, there are no symmetric orbits homoclinic to P
in system (2.1). If K > 0, then there are K symmetric homoclinic orbits 7, ;(£),j € {1, K} to
P that have a structure as sketched in Figure 4, i.e., the orbits Vhj (&) consist of five distinct
parts, two fast parts in which it is O(¢)-close to a fast reduced heteroclinic orbits (uy T (€ F
@),pg’i(f:Fﬁ*),v*,:l:q*,w*,:I:r*) (2.7) with (v, @, Wy, T«) given by (2.19) and (2.20), and three
slow parts in which (uy, ;(£),p, ;(€)) = (£1,0) + O(e) and (v, ;(£), a5 ;(§),wy, ;(€), ), ;(£)) are
given by (2.21), up to O(y/€)-corrections, with

1 1
The orbits Vhj (&) correspond to stationary pulse solutions

(U(Ea t)v V(§7 t)’ W(f, t)) = (uh,j (5)) Uh,j (6)7 Wh,j (E))
of (1.7).

Moreover, if |aD| > |8| and sgn(a) # sgn(B), then a saddle-node bifurcation of homoclinic
orbits occurs, to leading order in €, as y crosses through

Yei(a,8,D) = (—a) 71851 (D51 —D"5°1) >0 fora<0<p,
1

2.24
Yea(a,3,D) = o D I(-B)P1 (D 7T -D 71)<0 for B<0<a. (2.24)

The explicit expressions for the values v.; » of the saddle-node bifurcations are based on a straight-
forward leading order analysis: set the partial derivative of (2.22) with respect to A equal to zero
to obtain

D

A, = Ay(a,8,D) = <—%> T 001), (2.25)
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a+pB L - ______
Vel

a+p

VY2 | _ _ = 1

Figure 5: A graphical representation of the jump condition (2.22) and the associated saddle-node
bifurcations as described by Theorem 2.1 for o < 0 < 8 (with a + 8 > 0) and for 5 < 0 < «
(also with oo+ 3 > 0). Note that Ax € (0,1) for all parameter combinations.

and then insert this expression back into formula (2.22) to obtain .12 (2.24).

In Figure 5, the relations between A; and 7 as solutions of (2.22) have been plotted. The
two saddle-node cases at A. described by the theorem are also clearly visible. Two other bi-
furcations occur: one at ¥ = A = 0, which corresponds to &, = oo (2.23), i.e., the plateau at
which the U-component of the one-pulse solution is near 1 becomes infinitely long; the other at
v =a+ 3, A =1, where the pulse becomes infinitely thin — see also Lemma 2.2 below.

2.4 The proof of Theorem 2.1

The existence of the homoclinic orbit v, ,(§) C W* (P, )NW?* (P, ) will be established by study-
ing W*(M_) and W*(P.) as they pass along M}. The reversibility symmetry (2.2) plays a
crucial role in the proof.

The manifold W*(P.") is 3-dimensional, so that all orbits v, ({) C W*(P.") can be represented
by a two-parameter family, v, (§) = vp (§; V4, wy), where (v,, w,) represents the jump mid-point.
Of course, we only consider the part of W*(P_") that is spanned by orbits v, (§) that are O(e)
close to a heteroclinic solution of the FRS (2.5) away from M2 and M, i.e., we do not pay
attention to the other ‘half’ of W*(P.") that is spanned by solutions with a monotonically de-
creasing u-coordinate — see Figure 2. More precisely, vp(§) is exponentially close to M_ for
asymptotically large, negative values of £, jumps away as £ increases, and crosses through the
{u = 0} hyperplane at

’Y;(_fP,*) = 71;(_‘5P,*(U*,w*)) = (O’p*av*aq>kaw*7r*)' (2-26)

Note that v5 (&; v, ws) must be exponentially close to the slow unstable manifold W} _(P.") C
M that is spanned by £%~ and %~ (2.12), so that ¢, = v, + 1, r. = w, +1 as in (2.19). More-
over, we note that this family of orbits v (§; v«, ws) with finite pairs (vs,w,) has as its natural
geometric completion the slow unstable manifold W4 (P.") C M. in the limit that |v.| = oo

slow
and |w,| — oo such that their ratio remains fixed.
Within W*(P."), there is a priori a one-parameter family of orbits that is forward asymptotic to

M7, because W% (P ) N W$(MZ) is the intersection of a 3- and a 5-dimensional manifold in a
6-dimensional space, i.e., W*(P- ) NW#(MJ) is expected to be two-dimensional. The Melnikov
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calculus [21, 3, 5] of the previous section implies that v5 (&; vy, wy) C WH(P2) N WE(MT) if v,
and w, are related by (2.17). By construction, W" (P ) N W*(MJ) is spanned by v, (&;v4) =
V5 (& Vi, wi(vy)) With w, (v,) given by (2.17).

The evolution of 7, (& v«) near M7 is governed by the linear SRS (2.11). If v,,w, € (—1,0),
then ~, ., (&) intersects the {¢ = O0}-hyperplane (Figure 3). We may assume that the inter-
section v, . (§;v«) N {g = 0} takes place at £ = 0. This assumption determines the jump
mid-point &net,« (V) = Ep«(vs, ws(vs)). Moreover, it follows that &net.(v<) > 0 (2.26). For
€ > —&het,x (Vi) + O(1/4/e), i.e., if 4y, (& vs) is exponentially close to M7, the evolution of the
r-coordinate rp_, (& v) of v (&§;vs) can be computed explicitly. For general v,, r_,(0;v.) # 0,
but there are special values of v, such that r_,(0;v,) = 0. In fact, 7, (0;v.) = 0 if and
only if v, = —A%ﬁ*, where Ay . solves an algebraic equation that is to leading order given by
(2.22). Note that this is in essence how (2.22) has been obtained. However, also note that
the relation (2.22) has been deduced for the so far only formally constructed homoclinic orbit
V(&) € W*(P7) N W*(P.), while Ag. corresponds to the heteroclinic orbit v, (&v.) C
W*(PZ) N W#(M]). This is explained by the fact that &; ., the position of the jump mid-point
of v, 5(€), is of O(1/e) (2.23). Thus 1, ;(£) must be exponentially close to M for an asymptot-
ically long ‘time’. Hence, it must be exponentially close to W*(MZT). We define the (rigorously
constructed) critical heteroclinic orbit 7y, (§) by Vg . (€) = Ype, (€5 v«) With v, determined by Ap,..
Moreover, we observe that g, (§) is such that ||y, ;(£) — g, (£)]| is exponentially small for £ < 0;
and |A; — A | is also exponentially small, but nonzero. Note that v, ,(§) cannot be symmet-

ric, since it remains exponentially close to M7 for £ > 0; this necessarily implies that Do, L(0) #0.

Now assume that K # 0, i.e., that there exits at least one solution A = A; € (0, 1) of (2.22), and
that («a, 3,7, D) are such that W*(M_ ) and W*(M7) intersect transversely, i.e., that v is not
asymptotically close to ve1,c2(a, 5, D), the values at which the saddle-node bifurcations occur

(2.24). The above arguments imply that the heteroclinic orbit v, ,(§) € W*(P.) N W*(MT)
with Ag . = A; to leading order, exists and, by construction, that v, ,(0) € {g = = 0}.

By definition, the orbit vy, (§) for & € (a,b) spans a curve I'g,(a,b) C R®, and there is a 3-
dimensional tube 7, , C W*(P-") around I'y ,(a,b) (for any —oo < a < b < c0) which consists
of all orbits v~ (&; vs, w.) C W*(P) with (v.;w.) so close to (—AF ,, w.(—AF ,)) that
L
sup |7 (& ves wi) — 70, (€] < e v,
£<—380,

where —§p .« = —&net,« (v«), the position of the jump mid-point of 7, ,(£). The existence of 7y,
follows from the continuous dependence on the initial conditions of solutions of smooth ODEs
(as (2.1) clearly is); 7, defines an open neighborhood of T ,(a,b) for any —co < a < b < 00
in the relative topology of W*(P,"). Note that 7, contains both orbits that jump away from
MZF O(y/z) close to g, (—5&0,«) — these are the orbits close to 87, that only remain close to
MZ up to & = =1« + O(1/4/2) — and orbits that are exponentially close to M7 for arbitrarily
long ‘time’ — the orbits that are close enough to v, , (€). Note also that the ‘secondary’ jump
mid-points, i.e., the points at which the orbits v~ (&; vy, w,) take off again from M7, of all orbits
in 76; must be exponentially close to the curve I'y *(—%ﬁo,*, 00), that is itself exponentially close
to M7 and is approximated, or represented, by a part of a solution curve of (2.11) — compare to
region 3 in Figure 4 in which the curve I'; , (—&., &) is approximated.

The tube 7Ty, is stretched by the fast dynamics near M7 into a 3-dimensional manifold that is no
longer exponentially small in the direction of the fast unstable eigenvalue of MT — see Remark
2.2. In fact, 7j, is exponentially close and parallel to W*(MZ). Since W"(M]) intersects
W#(M_) transversely — which can be shown by the same Melnikov-type arguments that estab-
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lished the intersection of W*(M_) and W*(MZ) — it follows that 7, N W*(M_) exists as a

two-dimensional submanifold of 7. We label this manifold as Sy ,; it consists of a one-parameter
family of orbits v~ (&; va, wy) C W*(P.)NWS(M_), i.e., orbits in W*(P.") that are homoclinic
to M_ . Since 7, is exponentially close to 7, , (£) for £ < —12&o,+, and since Yo,4(€) takes off from

M at W, (P), it follows by the reversibility symmetry (2.2) that the orbits in S, touch
down on M close to W, (P.), the slow stable manifold of P~ in M that is spanned by £;5.

The existence of the homoclinic orbit -, j(g) is established if it can be shown that there is

an orbit v~ (§;v., wi) C S, that indeed touches down exactly on W3, (P. ). This result will
follow from another application of the reversibility symmetry. The above construction of the
two-dimensional manifold S,, C W*(P7) N W*(M7), that is based on the heteroclinic or-

bit vy ,.(§) € W*(P7) N W*(MT) and on the tube 7;,, has a symmetric counterpart in the
two-dimensional manifold SF, ¢ W*(P.) N W*(M_), that is based on the heteroclinic orbit
Yo (§) C W (P7)NW*(MT) and on the tube 75 ,. Note that by construction all orbits in Sy,
touch down (or: take off in backward ‘time’) on W3, (P.") C M, . Thus, v, ;(€) exists if it can
be shown that S;, and SS: , intersect.

To show this, we first note that
So NS, =Ty, N Ty, CWH(PZ)NW(PL),

since orbits in 7j, that are also in 7%, C W*(P,) C W*(M_) must, by definition, lie inside
S¢,«- Moreover,

dim (S;, NSg,) = dim (75, NTg) = 1.

Since both S(f* consist of solutions of (2.1), the dimension of S;, N SS:* cannot be zero, i.e.,
SN SS: , cannot be a point. It also cannot be two, which would imply that the two-dimensional
sets S(f* coincide. This is not the case, since S(f* are, as subsets of 76“%*, stretched like 75%*, thus

Sy.. is parallel to W*(MZ) and SS: . to W$(M7). Hence, we may conclude that we have proved
the existence of the (locally) uniquely determined homoclinic orbit ~y, ;(§) C W* (P )NW*(P.),
if we have shown that 7, , and 7{;}; intersect.

This follows from the local stretching of the tubes 7, and 76+* near MZT. To see this, we
consider the curves I' , (—5&0.+, 3€0,«) and T§, (—3&o«, 5€0,+) that are associated to v, (£) and
Yo (€) (note that v, (€) jumps at +&. by (2.2)). By construction, Iy, (—3&o,«, 360,+) and
1"6",* (— %{0,*, %{07*) are exponentially close to each other and exponentially close to MT. The tube
To.« is stretched in the direction of the fast unstable eigenvalue of M7 near Fi*(—%fm*, 1&0,4)
and is exponentially close to W¥(MJ), while 76+* is stretched in the direction of the fast stable
eigenvalue of M7 near F({*(f%fo,*, 1¢o.+) and is exponentially close to W*(MJ). Moreover,
both 3-dimensional manifolds ’E)i* extend to two sides — {u < 1} and {u > 1} — of M near
Foi,*(—%&),*, %507*), since they both contain orbits that are asymptotic to MZ. Thus, To.. and
76'7"* must have a nontrivial intersection. This completes the proof for K > 0.

Observe that the left hand side of (2.22) has at most one extremum for A € (0, 1), namely

D

D 7%D—1
4—(_ oD
%)

see (2.25). Therefore, K cannot be more than two.

Finally, we briefly consider the situation in which K = 0, i.e. in which there is no solution
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A € (0,1) of (2.22). In this case, the critical heteroclinic orbits g, (§) cannot be constructed,
and it follows immediately that W*(P-) N W*(P-) = (. The saddle-node bifurcations occur
at the transition from K = 2 to K = 0 and must be locally unique by the C'-smoothness with
respect to ¢ of the stable and unstable manifolds of MZ and PF [8, 9]. O

Remark 2.2 In [13, 14], the stretching and squeezing associated to the passage of an invariant
manifold along a slow manifold are described by the Exchange Lemma. This lemma can be used
to study the deformation of W*(P.) as it passes along M. Indeed, one may verify explicitly
that the sets of touch down points of the tracked manifold on the slow manifolds are transverse
to the flows on those manifolds. However, we have chosen for a somewhat more direct approach
here.

2.5 Explicit analysis of the number K of stationary one-pulse solutions

Theorem 2.1 above establishes that K < 2. In this section, we carry out a straightforward
analysis of the jump condition (2.22) to derive explicit results for the number (K) of stationary
one-pulse solutions in (1.6) for a given set of parameters. The following lemma is an example; it
is stated without proof.

Lemma 2.2 Let (o, 3,7, D,T,0,¢) be such that |aD| > |B|. Then, for € > 0 small enough, and
Yel,c2 as given in (2.24), we have

(a1) if sgn(a) = sgn(8), sgn(7) = sgn(a), and || < |a+ B, then K = 1.
(a2) if sgn(a) = sgn(B), sgn(r) = sgn(a), and |y > |o + |, then K = 0.
(a83) if sgn(a) = sgn(B) and sgn(vy) # sgn(a), then K = 0.

(b1) if sgn(a) = —1 = —sgn(B), a + B > 0, and sgn(y) = —1, then K = 0.
(b2) if sgn(a) = =1 = —sgn(B), a+ B >0, and 0 < v < a + 3, then K = 1.
(b3) if sgn(a) = =1 = —sgn(B), a+ L8>0, and a+ B < v < Ye1, then K = 2.
(b4) if sgn(a) = —1 = —sgn(B), a+ B >0, and v > 7.1, then K = 0.

(c1) if sgn(a) = =1 = —sgn(B), a+ B8 <0, and v < a + B, then K = 0.

(c2) if sgn(a) = —1= —sgn(B), a+ 5 <0, and a+ B < v <0, then K = 1.
(c3) if sgn(a) = -1 = —sgn(B), a+ B <0, and 0 < y < 7.1, then K = 2.
(c4) if sgn(a) = =1 = —sgn(B), a+ B <0, and v > 71, then K = 0.

(d1) if sgn(a) =1 = —sgn(B), a+ B >0, and v < ez, then K = 0.

(d2) if sgn(a) =1 = —sgn(B), a+ 5 >0, and ye2 <y <0, then K = 2.

(d3) if sgn(a) =1=—sgn(B), a+ >0, and 0 < v < a+ B3, then K = 1.
(d4) if sgn(a) =1=—sgn(B), a+ B >0, and v > a + B, then K = 0.

(el) if sgn(a) =1= —sgn(B), a+ B <0, and v < 2, then K = 0.

(e2) if sgn(a) =1= —sgn(B), a+ B <0, and ve2 <y < a+ 3, then K = 2.
(e3) if sgn(a) =1= —sgn(B), a+ 5 <0, and a + B < v <0, then K = 1.
(e4) if sgn(a) =1= —sgn(B), a+ B <0, and v > 0, then K = 0.

See also Figure 5, where we plotted (2.22) for certain parameter combinations. The left frame
represents the cases (b1) — (b4), the right frame (d1) — (d4).

3 Travelling pulse solutions

In this section, we establish the existence of localized one-pulse solutions to (1.6) that travel with
a fixed, well-determined, speed. As in the previous section, we will construct these pulses as
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homoclinic orbits v,, ;(§) to the critical point P

3.1 The formal construction of travelling one-pulse solutions, v;, ;(£)

We introduce the moving coordinates n = x — e2ct and, with a slight abuse of notation, set
& =n/e, so that (1.6) reduces to the 6-dimensional dynamical system,

uE = p
pe = —u+ud+e(av+Bw+y—cp)
ve = &q
g = e(v—u)—ederq (3.1)
we = BT
3
re = Hlw—u)— Fzchr

with an additional parameter ¢ for the speed of the travelling pulse. The structure of this equa-
tion justifies our choice for the magnitude of ¢ (= O(¢?)). With this scaling, the perturbation of
the fast (u,p)-subsystem induced by c is of the same order as the perturbations induced by the
V, W-components in the U-equation of (1.6). Note that, unlike (2.1), (3.1) depends explicitly on
the parameters 7 and 6. However, the critical points of (3.1) are identical to those of (2.1) and,
thus, given by (2.4).

The fast reduced system is identical to (2.5), as long as 7,0 < E%, and is thus again governed
by the Hamiltonian H(u,p) (2.6). For any c of O(1), system (3.1) possesses two invariant slow
manifolds and their associated stable and unstable manifolds, which we denote, with a slight
abuse of notation, by M* and W*%(MZ). Although MZ* depend on c, the leading and first
order approximations of MZT are still given by (2.8) and (2.9), so that it again follows that
H(u,p)|pz = O(€) (2.16).

However, there are two significant differences between (3.1) and (2.1). First, (3.1) does not
have the reversibility symmetry of (2.1) for ¢ # 0. As a consequence, we cannot expect to find
symmetric pulses and, more importantly, we cannot exploit the symmetry in the construction of
the pulse and in the associated validity proof. However, system (3.1) does inherit the symmetry,

E— —¢p— —-p,gq— —qr——-r and c— —c, (3.2)

which implies that the travelling pulses do not have a preferred direction, i.e., to any pulse
travelling with speed ¢ > 0, there is a symmetrical counterpart that travels with speed ¢ < 0.
Second,

%H(U(ﬁ)m(ﬁ)) _ ep(av+ Bw + 7 — cp), (3.3)

instead of (2.14), which implies that the Melnikov conditions will depend in an O(1) fashion on
¢ — which also further validates our scaling of the magnitude of the speed of the pulses.

As in section 2.2, we define the position of the jump mid-points of 7;7j(£) to be F&,, i.e.,

Yir,;(§) crosses the hyperplane {u = 0} at £ = F& (§« > 0). The coordinates of the jump
mid-points are defined by

’yt_r,j(:Fg*) = (OapfavjaQIawfarj)' (34)

Unlike the symmetric stationary case, the coordinates of the jump through the fast field from
M7 to M7, denoted by (p;,vy, gy, wy,ry ), will differ from those of the jump back from M7
to M_, denoted by (pi, v, ¢, wf,rl). Moreover, the middle of the pulse, 7;, ;(0), has become
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slightly artificial by this definition, in the sense that £ = 0 does not in general correspond to an
extremum of any of the U-, V- or W-components in (1.6). Nevertheless, with this definition we
can use the same partition of the homoclinic orbit ,, ;(£) into five regions — see Section 2.2 —

with If:Fs and I? as in (2.13).

We again use the Melnikov function to measure the distance between W*(M_ ) and W*(M]).
We find, assuming that &, = O(1),

A;H(v;,q:,w;,r;) = f]; HEdE

= [-epp (€ +&) (avr + Bur +7— e (E+€)) dE+O(eR)
= 2t (avy + Bwy +v — 2v/2¢) + O(eV/e),

where we have implicitly used that the slow coordinates (v, p,w,r) do not vary to leading order
during a jump through the fast field, i.e., that

AFv, ATp, Afw, ATq=O(/E) (35)
(see 2.15)). Since H(u,p)| .z = O(e?), we find as first Melnikov condition,
_ _ 1
avy + Bw; +v = g\/ic (3.6)

Since there is no reversibility symmetry, the second Melnikov condition for the jump from MZT
to M7 is slightly different,

1
av} + pwl +v = —5\/50, (3.7)
which follows from
A}'H(vf,qf,wj,rf) = f[}r H§d€

= i epn (€ + &) (av:f +Bwf +y—epp T (E+ g*)) dé + O(e/?)
= 2 (avf 4+ Buwi +v+ 3V2c) + O(eVe)

(compare py " (€) to py~(€) ~ (2.7)). Note that the jump conditions are consistent with the
symmetry (3.2).

We can proceed (formally) as in the stationary case. We solve the (linear) slow subsystems
explicitly, imposing boundary conditions like those in (2.18) at the boundaries of the three slow
regions (1, 3, and 5) and also imposing the Melnikov conditions (3.6) and (3.7). Here, we present
this analysis for the critical case 7,0 = (’)(E%), since travelling pulses can only exist for these val-
ues of 7 and 6. More precisely, if both 7,0 < 6%, then the flows on M;t are symmetric to leading
order and the only asymmetries in the construction of ;. ; (€) are introduced by the ¢’s in the
Melnikov conditions (3.6) and (3.7). From this, it follows that ¢ = 0, i.e., that 7, ;(§) = v, ;(£),
the stationary pulse — see Remark 3.1.

Thus, we introduce 7 and 0 by

N 1
2 , 0=¢%0 < —.
€

T=eT K

™ | =

The flows on M_ and M are, up to correction terms of O(g?), given by

{ vee = —ectTug + 2(v+1), 4 { vee = —ectug + 2(v—-1),
A 2 an 3 2
weg = fscﬁwg + f(w+1), weg = fscﬁwg + fe(w—1),



Figure 6: The asymmetric slow flows for the (v,q)-subsystem on M_ (left) and the (w,r)-
subsystem on M7 (right) for ¢ positive.

+

see Figure 6. The eigenvalues \;7,, of the decoupled (v, ¢)- and (w, r)-subsystems are given by

A= L(eer V@A), AE = 1) (—%éi °,§9;2+4), (3-8)

which clearly establishes the asymmetric character of the flows on MZE (for 7,6 # 0). The stable

and unstable manifolds of P restricted to MZ are spanned by

or = {g=N(F1+0)}, G = {r=D\(F1+w)

}
5 = {g=X\ L0}, G5 = {r=DA(FL+w) o

)

(compare with (2.12)).

Since the slow (v, ¢, w,r)-coordinates do not vary to leading order during a jump through the
fast field (3.5), we can ‘match’ the solutions in the slow regions 1, 3, and 5 by imposing boundary
conditions as in (2.18). As in the stationary case, there are more boundary conditions than free
parameters. Hence, there are relations between the coordinates of the jump mid-points,

(vosa ) €6y, (wo,r ) e by, (vf,ah) e 6y, (wi,rf) e by, (3.10)

as may be seen from the system geometry (see Figure 7). Furthermore,

vE = st (aﬂﬂff* - 1) 1, wE=st (eﬂ“«ff* - 1) —1, (3.11)
with A A
2 2
+ v + w
Sy = —m < 0, Sw = —m < 0. (312)

(Note that (3.10) and (3.11) reduce to their stationary equivalents (2.19) and (2.20) if either

¢c=0o0r 7 =6 =0 - see Remark 3.1.) We conclude that for any given pair (c,&.), the
(slow) coordinates (v, ¢F,wF,rF) of the jump mid-points are uniquely determined by the above

conditions combined with the matching conditions (3.5). Moreover, we have the following leading
order approximations of the v- and w-components of v, ;(£) in the slow regions (1, 3, 5),

—2s7e N Esinhedté, — 1 in 1, —2spe e sinheAts, — 1 in 1,
Upp = sy e E6) g A (616 £ 1 in 3, wy = speteEE) fogtes () 11 in 3,
2steMo Esinhedj € — 1 in 5, 2stefwésinheA & — 1 in b,
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Figure 7: A schematic sketch of a travelling pulse -,, ;(£) homoclinic to P, .

see Figure 7. The Melnikov conditions (3.6) and (3.7) impose two relations between ¢ and &,,

1 _ — [ ,—2exTe, — (,—2exte.,
e = o (i) 1) g (e ) 1)

_ . (3.13)

*;,\/ic = « (sj (e%)‘v & l) - 1) + B <s$ (ez‘f)‘wg* — 1) - l) + 7.
A pair of solutions (¢, £&,) to (3.13) with ¢ # 0 corresponds formally to a homoclinic solution
Yer,; () of (3.1) and thus to a pulse solution of (1.6) that travels with speed &*c.

Remark 3.1 If 7,0 <« Eiz, i.e., if 7,60 = 0 to leading order, then A} = +1, A\* = +
sF = st = —1, so that (3.13) reduces to

v = Sw =

1
7, and

1 2 1
—§\/§c =aA?+ BAD —y = gﬁc,

to leading order, with A as in (2.20). Hence, ¢ = 0 and v, ;(§) = 7, ;(§) (2.22).

3.2 Existence theorem for travelling pulse solutions

Theorem 3.1 Let (a,3,7,D,,0,¢) be such that T = E%, 0= %, and assume that (3.13) has
K solution pairs (cj, (€+);) with ¢; # 0. Let € > 0 be small enough. If K = 0, then there
are no homoclinic orbits to P. in (3.1) with ¢ # 0. If K > 0, there are K homoclinic orbits

Yer; (&), 5 € {1,..., K}, to P in (3.1) that have a structure as sketched in Figure 7 and that
correspond to travelling one-pulse solutions of (1.6) which travel with speed szc}‘ # 0, where

c; =cj(e) = c; + O(e).

The proof of Theorem 3.1 is similar to that of Theorem 2.1 in Section 2.4. Nevertheless, there
are differences, especially since the proof of Theorem 2.1 strongly depended on the reversibility
symmetry in (2.1). The proof is given in Section 3.3.

Generically, K can be expected to be positive for open regions in the (o, 8,7, D, 7, é)—parameter
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space. However, a priori, it is not clear whether parameter combinations exist for which K can
be non-zero. In fact, though (3.13) is a relatively simple expression, it can — of course — not be
solved explicitly. Nevertheless, it can be evaluated, and the (open) region in parameter space
in which K # 0 can be determined with a simple and reliable numerical procedure. Moreover,
(3.13) can be approximated asymptotically in various limit settings. As an example, we consider
the case

1 ~
%:S>>1, 6=hs <1,
i.e., we assume that 7 is large and @ is small, but both still O(1) with respect to . We thus
introduce an artificial second asymptotic parameter § that is independent of € such that 0 < ¢ <
§ < 1. We further assume that all other parameters, including h, are O(1) with respect to 4.
We search for solutions (¢, &) of (3.13) such that

c>0, c=0(1), X.=¢e0é = O(1),
with respect to . Note that this implies that we look for homoclinic orbits that spend a long
‘time’ (O(Z;)) near M. It follows by a straightforward computation from (3.11) that,

X

vy = 2627 HOC) L1 4L O®6), vf = —1+0(0), wy = O6), wl = 0(5), (3.14)

*

so that (3.13) reduces to

1 1
g\/ic:ow; +v+0(9), —§\/§c=—a+7+(’)(5).

€

Hence, there exists a homoclinic orbit v, ; (§) to P, in (3.1) for a > vy with

c=cy = g\/i(a—’y)—i—(?(é,s); (3.15)

Moreover, X, 1, and thus (&)1, can be determined through v, and (3.14). By the symmetry
(3.2), we conclude that K =2 for 7> 1,0 < 1 and a > 7.

3.3 Proof of Theorem 3.1

The construction of
Verj (§) CWH(PI)NW?(PT) C WP ) N WM,

is again based on a special heteroclinic orbit v, ,(§) € W*(P,) N W*(MJ), a tube 7, C
W*(P.") around it, their counterparts in backwards ‘time’ v}, (¢) ¢ W*(P. ) N W*(M{) and

Tt C WS(Po), so that v, ;(€) € T, N T

For any ¢ > 0 (fixed), W"(P.") is represented by the two-parameter family of orbits v, (&; vy, wy ) C
W"(P-). We know by the Melnikov analysis that there is a one-parameter subfamily of orbits
Met (&5 02) = 7p (& v 5w, (v7)) € WHPS) N W#(MT), with w, (v;) determined by (3.6).
The orbits 7, (& v, ) follow the slow flow on M7, and it can be checked that those with
vy € (—=1,S;) again cross the {¢ = 0}-hyperplane. Here, S, is determined by the obser-
vation that (vy,q;) € I~ in the (v,q)-subsystem on M_ (3.10), while (v, ,q; ) must be to
the left of 15" in the (v, g)-subsystem on M so that ~;_, (& vy) may cross through {q = 0};
a similar condition must hold for (w, (v, ),r,) in the (w,r)-subflows on MZF — see Figure 7.

For each v, € (—1,5,) the intersection of ~, (& v, ) with {¢ = 0} occurs by definition at
€ =& (v) € (&4, &), and these intersections define a one-dimensional curve denoted by

Z- ={(w (v.)p (v )v (0.), 0,0 (v ), 7 (0.) = Ynee (Gpeei v ) s vw € (=1,5,)}, (3.16)
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see Figure 8, where one point on Z~ is illustrated, since v, is fixed in the figure. The curve Z~
is by construction exponentially close to M7, and its projection on M7 is given by
7~

slow

={(1 +Euf(v_,O,w_,r_),pf(v_,U,w_,r_),v_,O,w_,r_) cvy € (1,5},
see (2.8).

We perform the same construction in backwards (spatial) time and define the one-parameter
family of orbits v, (&v) € W*(P=) N W*(MZ) by (3.7), the one-dimensional curve Z+ =
{(u* (o), pt (o), vt (v}),0,wt (vf), rH(vF))} C {¢ = 0}, and its projection ZJ = on MZ.
The (w,r)-components of Z7 _ define two curves, that typically intersect, i.e., the condition
(w=(vy), 7" (vy)) = (wT (vf),rT(v])) determines for each given ¢ a discrete number of critical
values (v, ,(c),v},(c)). However, for general c, the one-dimensional curves Z__  and Z  do
not intersect within the 3-dimensional manifold M7, i.e., v~ (v;,(c)) # v (v, (c)) in general.
Nevertheless, the combined condition,

(v (v (©),w™ (v5 (), ™ (v (€))) = (v (v (e)), w™ (v (€)), 7 (v (0))), (3.17)

in principle determines discrete critical values c; of ¢ for which ZJ _ and Zs"l'OW intersect (trans-
versely) in MT. It is a matter of straightforward calculations to show that (3.17) is equivalent

to (3.13).

The present construction is computationally more cumbersome than that of section 3.1, but its
character is more geometrical and it can thus be more easily extended into a validity proof. To
do so, we define (for any c) the special heteroclinic orbits v, , (£;¢) = vy (&v5,) C WH(PZ) N
We(MF) and 77, (€ ¢) = nier (& 0d,) © W(P2) N W(MT). The tube 7, (c) € W*(P.)
is spanned by those orbits v (& v, ,wy) C W*(P.) that are exponentially close to v, ,(§;c)
for £ < (=&« + &y (vr.)). Likewise, the tube 7.%,(¢c) C W*(P:) is spanned by those orbits
75 (& vy, wy) C W#(P:-) that are exponentially close to Y (& c) for € > (T 6}1,5(11:*)). In
forwards ‘time’, 7, (c) is stretched along W*(M7 ), while T.*, (c) is stretched along W*(M) in
backwards ‘time’. By construction, the (stretched) tubes intersect the 5-dimensional hyperplane
{g = 0} in two-dimensional manifolds, ZF(c) (by definition).

The theorem is proved if it can be established that there are non-zero values of ¢ for which Z7(c)N
ZF(c) # 0, since each point in this intersection determines a point in W*(P. )nW#*(P. )n{q = 0}.

To show this, we extend {¢ = 0} to a 6-dimensional space, denoted by {{g = 0}, ¢}, by adding c as
an independent variable. This space contains the extended manifolds {Z(c),c} and {Z}(c),c}
as 3-dimensional subsets. Since v, ,(&;¢) and 7', (&;¢) are exponentially close to M7 as they
intersect {g = 0}, and since the projections Z __ and Z:l'ow intersect by construction near ¢ = c¢;
determined by (3.13), it follows that {Z7(c),c} and {Z}(c),c} are exponentially close for ¢ near
cj. As in the proof of Theorem 2.1, it now follows from the fact that 7,7, (c) is stretched along
WH*(MZ) and T, (c) along W#(MT), that — in the 6-dimensional space {{g = 0},c} — the 3-
dimensional manifolds {Z; (c),c} and {ZF(c),c} must intersect transversely in discrete points
that have c-coordinates c} (), which are to leading order determined by (3.13) or (3.17). Hence,

Zr(c)N Z;C(c) = 'y;r,j(f) N{qg=0}#0 at c;(e) = ¢ + O(e). O
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Figure 8: Example of the construction of v~ (v, ), w™ (v, ), and 7~ (v, ).

4 Bifurcation from stationary to travelling pulse solutions

4.1 Leading order analysis

To investigate the nature of the bifurcation from stationary one-pulse solutions to travelling
one-pulse solutions, we start by considering the travelling pulse just after ‘creation’, that is, we
set

c=79, (4.1)

with 0 < £ € § < 1 (so ¢ is no longer an unknown anymore). We expand the three unknowns,
F =0+ O0(8),0 = 0.0+ 0(8) & = € g+ 8641 +O(6%). Notice that 7, 9 and 0, o determine the
bifurcation values of 7+ and @ at which the bifurcation occurs, since the speed of the bifurcating
travelling pulse reduces to zero at 7 = 7,0 and 6 = 6, . Since the bifurcation is co-dimension

one we expect to find a relation between 7 o and é*p.
The eigenvalues (3.8) and (3.12) become

ME o= £1-120040(8%), M = 4 -

= —1+1%,,0+0(8%), sf = -

SH <SH

S

We also expand the four equalities in (3.11), using Ag := e =50,
vf = —Af  Fh.0 (5 — 343 + Aflog Ag) + 2e€, 1 A0 +0(6%),

2 H 2 2 2
Fo= —AP w520 (3- 348 + 54 s Ao) + 2560485 +0(5?).

w

Next, we substitute the above expansions into the jump condition (3.13), and we recall that
¢ = 4§, to obtain
2
= adAl+BAP (twice),
5 2 2
ato (2 — 1AZ 4 AZlog Ag) + B2 (% — 14D + 5AP 10gA0> , (4.2)
2
= et (add+ 54F)

Wl
o Wi-
Il
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9*,0

20 60 80 100

Figure 9: For (o, f8,7,¢) = (3,1,2,0.01), the bifurcation point 72*70(@*70) is plotted for D =
2,5,10,100. The value of the jump mid-point &, ¢ is, respectively, 40.547,47.018, 50.356, 54.393

and is computed through (4.2). When D = oo, we have &, o = 54.931 and 74 ,0(6s0) = 7,0 =
1.0460. This is the dotted line in the figure.

where we equated coefficients on O(1) and O(4) terms, respectively, and added and subtracted
the two O(§) equations. Note that the equation for Ay is identical to that of the stationary
one-pulse orbit (2.22): near the bifurcation the width of the travelling pulse is to leading order
equal to that of the stationary pulse. Equations (4.2) determine the three unknowns Ay (which
gives &, 0), Tx,0 as function of é*p, and &1 = 0. The solution 7, ¢ as function of 9*70, is plotted
in Figure 9 for several values of D.

Remark 4.1 We briefly consider the case of D large, i.e., D = O(3). It immediately follows
from (4.2) that &, 0 = —%% log (%) (Here, we also have to assume that v > 8,a > 0 or that
v < B,a < 0). Moreover,

un(0) = 32 (a = (r=8) + (1~ B)log (%)) +0().

This 7. is analogous to the (72).,0 we find in the analysis for travelling pulses of the reduced
two-component system (6.1) — see Section 6.

4.2 Subcriticality and supercriticality of the bifurcation

To determine the nature (supercritical versus subcritical) of the bifurcation, see Figure 11, and
also for the stability analysis [11], we actually need the correction terms up to and including
third order in ¢ in the above calculations. To keep the calculations within reasonable limits, we
set the bifurcation parameter 6 equal to one, such that in the above analysis the w-component is
symmetric and has no higher order corrections, i.e., 6=0in (3.8), etc. Note that 6 has also been
set to § = 1in [18, 24, 25]. Moreover, most of the numerical results presented in [2, 16, 19, 23] are
for # = 1. We also assume that aAZ + %Ag/ b 0, which implies that the stationary one-pulse
limit is not near a saddle-node bifurcation and that it is stable [11].
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Figure 10: Left frame: (a,8,D) = (3,1,5). Right frame: (o, 3,D) = (3,—1,5). Note that we
did not plot 7, o but a ‘scaled’ version 7, »/C. To be more precise, C' = 3%\/501(%*70)4, and the
scaling therefore depends on A,. However, C' > 0 for Ay € (0,1). Thus, the scaling does not
change the sign of 7, 5. Moreover, note that the vertical asymptote (for 5 < 0) is exactly where

2
aA? + %A(f’ =0 (Ap = A, see (2.25)). The last free parameter, v, actually determines the

value of Ay via (4.7). Thus for (o, 3, D) = (3,1,5) it is possible to have a negative, as well as a
positive 7 o.

Lemma 4.1 Let (a,3,7,D,T,0,¢) be such that T = (9(6%),0 = lL,a > 0, (2.22) holds, and

a Al + %Ag/D > 0, where Ag = e %40 and 0 < e € 1. For c =4, with e < § < 1, a travelling
pulse ezists for T = (7.0 + 62F2 + O(6%)), with

o 2 1
0 = 3\/§a(1—Ag+AglogAg) >0,

)

(4.3)

S _ 3 A 4 2 2 2 1 ,427..3 22 , aAflog® A2(log A2-1)
Tx,2 = Eﬂa(ﬁho) |:1 - AO + AO log AO - §A0 IOg AO + OaAg-{-OﬁAg/DO -
D

Note that the sign of 7., determines the nature of the bifurcation: a negative 7., yields a
subcritical bifurcation, while a positive 7, o yields a supercritical bifurcation. For given system
parameters, we can evaluate (4.3) to determine the sign of 7, ». Moreover, we observe that it is
possible for the same («, 8, D) for 7. 2 to take on positive, as well as negative, values, depending
on vy (via Ap), as is illustrated in Figure 10.

Proof. The proof consists of an elaborate — but straightforward — asymptotic analysis of the
jump conditions (3.13). Plugging in v}, w} with § = 1 yields, to leading order in ¢,

a(sf(eﬂw‘ﬂ* -1)-1) - Be 258 4y = :{:%\/50.
After expanding the two unknown variables 7 and &,
F=Fuo+ 01 + 02 Fo + 03Tz + O(0Y), & =E&o+ 061 +8%Eun + 8383+ O(6Y),
we obtain the leading order approximations of (3.8) and (3.12),

A

S

T

= 41 —%72*70(5 +(:|:%7A'310—%7A'*,1)52 +(:|:%7A'*707A'*71—%7A'*72)(53 —‘1-0((54),

. . A . (4.4)
= —1 +i#,06 +i7,,6° ?(%73’07%7'*72)53 +0(64).

<h
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With these expressions we deduce,
CiQE)‘?’:{* = e 20 + e~ 2880 (?57205*,0 - 255*,1)5 + e~ 2880 [_ig(ﬂ,o)%*,o + 571*,16*,0

Fefi0bu1 2627 08k,085,1 + 567 (F4,0)%(€x0)2 + 262 (€ 1)? — 26, 2] 62
+e72800 [~ 2ef, 0P, 15* 0 F efabio £ 1e2(7, 0)3(5* 0)% + 274 074,1(€x0)?

) (4.5)
:F% 3(7'* 0) (&, 0) - Z e(7u, 0) Eun FeTu1ben + 6 (7'*,0)25*,05*,1
+2¢2 T 15* 0§* 1 — € (7'* 0) (5* 0) 5*,1 + 2¢2 7'*,0(5*,1) + 2537:*,05*,0(5*,1)2
_§E (5*,1) + ET*,O&*,Z + 25 T*,of*,oﬁ*,z + 4525*,15*,2 - 256*,3] 63 + 0(54) )
and,
6_2%6* = 6_2%5*,0 - %56*716 258 0§ + B_QDE* 0[ D€ (5* 1) - %55*,2]62 (4 6)
+€_2%€*’0 [_%53(5*,1) + ﬁg 5*,15*,2 - 356*,3](53 + 0(64) - '
(Recall that €, ; = O(1).)
Combining (4.4), (4.5), and (4.6), we find to leading order (twice)
ad}+BAF =7, (4.7)

which agrees with the first equation in (4.2).
The O(§)-corrections read
2
tlaf, o(1 — A3 + A%log A?) + 2¢6, 1 (aAZ + BAD) = =£iV2.
By adding and subtracting the above two equations, we obtain

2 1
* = 9 A* = 5 2 9
£e1 =0, Tup 3\/_a(1—A%+A%10gA%)

which agrees with (4.2), since é*,o = 0. Note that the function 1 — A2 + AZlog A2 is positive for
all Ay € (0,1) — it decreases monotonically from one to zero as Ag increases from zero to one.
Since a > 0 it follows that 7, o > 0.

At O(8%), we find
0 = *307,1(AF —1) — aAf[—5e(F4,0)%E0 F 160 + 56%(F4,0)%(6x0)* — 26 2]
—Lea(Fi0)%E 043 + 2%55*’2A0%
(since &1 = 0). Subtracting the two equalities implies

ate1(l— AZ+ Ajlog A3) =0 = +,,=0.

Adding both terms yields

11 aA?(74,0)?log A3(log A2 — 1)
16 ¢ a2 + B AZ/D

5*,2

We note that log A2 —1 < log AZ < 0 and o A3+ %Ag/D > 0, therefore, sgn(&.2) = sgn(a) = +1.
Thus, the width of the pulse (2¢,) is larger than the leading order width (2, ), i.e., the width
of the travelling pulse is larger than the width of the standing pulse.
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The O(83)-term is given by
0 = +a(i5(F0)° - %A 2)(A% — 1) F 2ot 0 A% [—2e(F0)% s 0 + 22(74,0)%(€x0)? — 2e€4 2]
FaAf[ets28e0 — $62(F4,0)2(€5,0)2 + £3(74,0)3(4,0)® + 74 06x,2 — 262 %4 06 06n 2 F 2660 3]
1286, 5 AP
Adding both terms implies . 3 = 0, subtracting yields,
a(F5(7,0)® — 574.2) (A5 — 1) — 3t 0AF[— 36(F4,0) %60 + 562 (F40) (€ 0)? — 266 2]

—aAf[eT 2640 — 167 (74,0)% (€x0)? + §€°(74,0)3 (640)® + ET*,O‘E*J — 26%Fu 0€u0be2] = 0,
which can be rewritten as
0 = —addf oebiolog A2+ LaAl(7.0) log® A2 — La(fi0)(1 — A3 + AZlog A2)

+iaf o(1 — A3 + Allog A2).
Then, using the expression for 7, ¢ and £, 2, we obtain

1

! 3 =2 Ab(7.0)! log® A3(log A3 — 1
”A—*vz = g(ﬁ,o)s - 3_2\/§CIA3(7A'*70)4 log3 A(Q) + 3_2\/5(1 O(T 70) og 0( 0og Ajp )

aAZ + B3P

which can be rewritten as in (4.3). O

For D large, we can analytically determine the sign of 7 2 in (4.3), as we now show.

Corollary 4.2 Let (o, 3,7, D,7,0,¢) and Ay be as in Lemma 4.1 and assume that D = % with
0 <e <6< 1. Define A € (0,1) as the (unique) solution of

2
1— A2 4 Allog A% + §A[2) log® A% — A21og® A2 =0 (4.9)

(AZ = 0.11063...). Then, #.o > 0 for parameter combinations such that 0 < Ay < AZ + O(6)
and T2 < 0 for 1 > Ag > AZ + O(5).

Proof. It follows from (4.3) that, to leading order in §,
Tw2|lD=0(-1) = %\/504(%*’0)4[1 — A% + AZlog A2 — %Ag log® A% + A2 log? AZ(log AZ — 1)]
= 2V2a(f0)%[1l — A2+ A2log A3 + 2AZlog® AZ — AZlog® AZ] =: C#,,,

with C = £v2a(f.0) > 0 and 7, , = 1 — A} + AZlog A2 + 2A%log® A2 — AZlog® AZ. Thus
sgn(#2) = sgn(#,). We notice that 7,(0) = 1 and 7,(1) = 0. We now show that 7,(s), with
s := A2, has a negative minimum by differentiating,

d 2.,
— 1 -1 1 -1).
dSTQ (log s) (3 og” s +logs >

, we see that 7.(2) has a unique extremum if
,0)) >

Thus, with z := logs (so that z € (—o0
is implies that =e 8 € (0,1), so that
/3. This implies th A = e 3(HVE3) ¢ (0,1 h

2,242-1=0,4e,z=2"=

_3 _

3 1
A AM “134v3) (31 9 am
T4y ) =1-¢1 Z+Z 33 ) <0.

ylklr—‘

. . . . /\l . . . /\l .
Hence, A)' determines a negative minimum of 7, 2, Which implies 7, , must change sign once for

A= Af € (0,A}"), where A? is determined by (4.9). O

An additional consequence of Lemma 4.1, that holds for more general values of D, is
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Figure 11: The solution curve of equation (3.13) in the (7,c) plane for the parameter values
(o, 8,7,D,0,¢e) = (5,-3,1,4,1,0.01). We have chosen the parameters in such a fashion that they
satisfy the conditions in Remark 4.2. In the left frame we observe a subcritical bifurcation at
7 = 7x,0 = 6.01363. Moreover, we observe that as 7 goes to infinity the upperbranch, c4 (7), goes
to the theoretically-predicted, leading order value, 3v/2(a — ) = 6v/2, see (3.15). Finally, from
this numerical continuation we observe that the two branches merge at a saddle-node bifurcation

L~num

at 75N = 0.84917 and c3\" = 6.3027. In the right frame, the region near 7 = 7, ¢ is magnified.

Corollary 4.3 Let (a,8,7,D,7,0,e) and Ao be as in Lemma 4.1. Furthermore, assume that
B <0, aD > —fB, Ay > A, > AZ (with A., AZ as in (2.25), (4.9), respectively), then the

bifurcation is subcritical, i.e., T, o < 0.

Proof. Observe that in this case
aAdlog® AZ(log A2 — 1)

< A2log® AZ(log A2 — 1) < 0.
A2 + £ A2/P ’ oo

Therefore, 7. 2(Ap) < C%;,Q(Ao)a with %;,2(A0) as defined above, and Cﬁ:g(Ao) is negative for
Ay > Ag O

Remark 4.2 If, in addition to the conditions in Corollary 4.3, it is also assumed that a > 7,
then it follows from our analysis in Section 3.2 that there is a travelling pulse with speed ¢ =
3V2(a— %) 4+ O(6,¢) > 0 for # > 1 (3.15). This indicates that the curve ¢ = ¢(7) has a fold
structure, i.e., for increasing 7 (and all other parameters fixed) there is a saddle-node bifurcation
of travelling pulses at 7 = Tgny < 7. at which two travelling pulses bifurcate with speeds
ct(7) > 0 and c4(Fsn) = csy > 0; the pulse associated to c_(7) merges with the stationary
pulse at 7 = 7,9, while the other pulse exists for all 7 > 75y, so that c; (#) = 2v/2(a —7) as
7 — o0o. This can be checked by using a continuation method for the solutions of (3.13), see
Figure 11. Hence, there exist parameter combinations for which two types of travelling pulses
coexist with the stationary pulse (for fsy < 7 < 7.p). Both the stationary pulse and the
travelling pulse associated to ¢y (7) may be stable [11].

5 Stationary two-pulse solutions

In this section, we establish the existence of localized, symmetric, standing, two-pulse solutions
of (1.6). We construct these pulses as homoclinic orbits 7,, ;(£) to the critical point P, .
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5.1 The construction of 7,, ;(§) homoclinic to P~

We search for stationary pulse-like solutions. Therefore, the PDE (1.7) again reduces to (2.1),
and the basic observations (on the fixed points, the reduced limits, the slow manifolds, etc.) are
the same as in Section 2.1. However, for symmetric standing two-pulse solutions, we have to
distinguish nine different regions instead of the five regions as we did for the one-pulse solutions
— see Section 2.2. We again parametrize the two-pulse solutions so that its u, v, w-components
are at a local extremum at £ = 0. However, there are three local extrema, see Figure 1, and
for symmetry considerations we choose to put the zero of the -axis at the second location, the
one exponentially close to M_ . It turns out that vy, ;(0) and w,, ;(0) are local minima, while
U, (0) is a local maximum, see Figure 1 and Figure 12. We define the four ‘jump mid-points’
of 73, ; by :I:{i’2 (not to be confused with the &, 1,&, 2 of the previous section). Where the last
‘back’ (i.e., the final jump of M back to M_) of vy, ;(£) crosses the {u = 0}-hyperplane at
¢ = €1, and the last front of Y2p,j (€) crosses the same hyperplane at ¢ = £2. Note that by
construction 0 < &2 < ¢L. The reversibility symmetry implies that —&! is the jump mid-point of
the first front and —¢2 is the jump mid-point of the first back. Thus,

Vap,i (£EL) = (0, F DL, vi, T, wi, Fry) s Yap 5 (£E2) = (0, £p%, 03, +47, wi, +r3) . (5.1)
We assume that &1, €2, as well as £ — €2, are large, i.e., 51’2 and £ — €2 are O(%) We now
define the four fast intervals I} 2468 and the five slow intervals I1:3:57:9
I2’4 = (—fi’z—%,—tfi’z L ) 168 ( 531-4—\[) Il = (—oo,—ﬁ—\/ig} ,
7= [+ L7 - L] = -8 7,52 L] =g+ %0

The nine different regions are then

1: The dynamics take place exponentially close to the slow manifold M_: £ € I1.
2: The dynamics take place in the fast field: ¢ € 7.

The dynamics take place exponentially close to M1 £ € I3.

The dynamics take place in the fast field: € € I;%.

The dynamics take place exponentially close to M_: & € I5.

The dynamics take place in the fast field: € € I?.

The dynamics take place exponentially close to M1: & € IT.

The dynamics take place in the fast field: € € I?.

The dynamics take place exponentially close to M_: & € I2.

The analysis of the formal construction is now nearly the same as for the standing one-pulse case
(Section 2.2); the only difference is that it involves a bit more bookkeeping. However, qualita-
tively, nothing changes; for example we still have A?A’G’S (v,w,q,7) = O(y/2), the equivalent of
(2.15). The homoclinic v, w-component on the slow manifolds are still governed by (2.10) and
(2.11). Together with the usual boundary conditions, of which there are in total forty, we get

2e*¢ (sinh (e£}) — sinh (€2)) — 1 in 1
—ee(6+81) _ ge(€-€D) _ 2¢%€(sinh (££2)) + 1 in 3
Vop(€) = { —eS(6+EL) 4 eme(€HED) 4 s(6=6D) _ s(6-€) 1 in 5 (5.2)
—e(6+8) — e=(6-€) — 2¢=€(sinh (££2)) + 1 in7
2e ¢ (sinh (€}) — sinh (€2)) — 1 in9,
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and likewise

2e¢ (sinh (%fi) — sinh (%{f)) -1 in 1
_e~p(E+E) _ ep (€€ _ 2e ¢ (sinh (5£2)) + 1 in 3
Wop(€) = { —e BEHED) 4 e~ BEHED) 4 eB5E—ED _ 5D 1 in5 (5.3)
_emBEFE) _ o B(E-€D) _ 2e~ 5¢(sinh (5£2)) + 1 in 7
2e~ D¢ (sinh (5¢&1) —sinh (5¢2)) — 1 in9.

2), there are two Melnikov conditions (instead of the expected

By the reversibility symmetry (2.
2.17),

four), which are analogous to (
avy? + pwy? +4 =0, (5.4)

with vl? and wl? defined in (5.1). When we define A; := e=*¢+ and Ay 1= e~ (0 < 4; <
As < 1), and combine this with the above results (5.2),(5.3), and (5.4), we obtain

—aA} + ad Ay — a1 Ay — BAD + BAP AP — BAP A, +4=0

n 2 11 11 (5.5)
+aA3 — aAjAy — a1 Ay + BAP — BAP AP —BAP AP +v=0.
By adding and subtracting, this system can be transformed into
1 1
Gl(Al,Ag) = Oé(Al - A2)2 + 5(A1D - A2D)2 = 0 (5 6)
Ga(A, Ag) == a(A— A?) — 204,471 + B(AP — AP)—2BAP AP = _24.

The above formal analysis gives rise to the following theorem.

Theorem 5.1 Let (o, 3,7, D,T,0,¢) be such that (5.6) has K solution pairs (A1, A2) with 0 <
Ay < Ay < 1. Let e > 0 be small enough. If K = 0, then there are no homoclinic orbits to P
in (2.1) that have a structure as sketched in Figure 12. If K > 0, there are K homoclinic orbits
Yop.(€)s § €{Ll,..., K}, to P in (2.1) (with structure as in Figure 12). These correspond to
symmetric standing two-pulse solutions of (1.6).

Given the form of equations (5.6), it is natural to solve A; and v as function of A2 and the system
parameters «, 8 and D. In Figure 13, both A; and v are plotted. Note also that Gy(A1, A2)
cannot vanish in (5.6) if sgn(a) = sgn(B). Thus, there only exist homoclinic 2-pulse solutions if
sgn(a) # sgn(B) — see section 6.

Proof of Theorem 5.1 A symmetric standing two-pulse 7,, ;(§) is reversible (2.2) and we
can therefore argue along the same lines as in the proof of Theorem 2.1. In fact, the proof of
this theorem goes in essence very similar to that of Theorem 2.1. Therefore, we will omit most
details. By the first Melnikov condition in (5.4), there exists a one-parameter family of orbits
Vs (& vk wh(vh)) € WH(PZ) N W3(MT). We define the tube Ti. C W"(PZ) as the collection
of orbits in W*(P.") that are exponentially close to 7;., (& vl;wl(vl)) for € < —¢L. All orbits
in 7;, approach M7 and follow the slow flow on M for some ‘time’ (which may be infinite),
after which they take off parallel (and exponentially close to) W*(MZ). In other words, near
MZ Ti .« is strongly stretched along the direction of WH*(MZI). Tt thus follows by the appli-
cation of the second Melnikov condition in (5.4) that 7, intersects W*(M, ); the intersection

T.NW? (M7) is again two-dimensional, i.e., it consists of a one-parameter family of orbits
C W¥(P-)NW#(MZ). As in the proof of Theorem 2.1, it can now be shown that there is a
unique orbit 73:*_ (§) C T .NW*(M7) that is homoclinic to M such that 73:: (0) e {g=r=0}

— note that this also determines the position of the symmetry point £ = 0. Again, the algebra
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Figure 12: A schematic sketch of a symmetric two-pulse 7, ;(§) homoclinic to P, .

leading to the construction of 73:: (€) is equivalent to the above analysis and yields at leading
order (5.6). The existence of the 2-pulse homoclinic orbits 7,, ;(&§) now follows by arguments that
are identical to those in Theorem 2.1. It is based on the construction of the sub-tube 7, C 7,

around ’ya’*_ (€), its symmetrical counterpart 75, around the orbit 'ygjj (€) and the application of

the reversibility symmetry. O

Remark 5.1 In the proof presented above we have used that the jump mid-points vi? and wi?

satisfy certain constraints. In particular, v} € (—1,0), wl = f%(avi +7), v2 € (v}, V) and
1 2

w? = —%(avf + ), where V = —% — 5 log (1 — e 28 +e’€(51+53)>. These constraints

arise naturally from the requirement that the tracked orbits lie on the correct side of the stable
and unstable manifolds of the slow manifold, so that they can have a second pulse.

Remark 5.2 In our analysis we have focused on the existence of localized one- and two-pulse
patterns. As for instance in [6], the same geometrical approach as in the proofs of Theorems
2.1, 3.1 and 5.1 can be applied to establish the existence of many other kinds of stationary or
travelling patterns, such as N-pulse solutions and various kinds of spatially periodic wave trains.
We refrain from going into the details here. However, we do notice that these patterns can be
stable and do play an important role in the dynamics of (1.7) — see section 7.1 and especially
Figure 15.

5.2 The existence of two-pulse solutions

Just as was the case for the K of Theorem 2.1, it is, a priori, not clear whether there exist pa-
rameter combinations for which the K of Theorem 5.1 is non-zero. To show that these parameter
regimes do exist we first choose an explicit D as an example, that is, we put D = 2. Naturally,
we also have to assume sgn(a) # sgn(8). With this special choice of D we analyze (5.6). It
transforms into

{ Hyi(Ay, Ag) := a(A; — Ag)? + B(VA; — VA5)? — 0

Hy(Ay, Ag) = (A — A7) —2a4> + ﬂ(Az—Al)—Qﬁ\/ﬁ—; = -2y

(5.7)
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Observe that the equality Hy(Aj, A2) = 0 does not depend on 7. Moreover, v only appears in
the right hand side of Hy(A1, A2) = —27. That is, v only shifts Ha(A;, A3) up or down. So,
instead of solving for A; and A, in terms of the unknown parameters «, 3 and <, it is much
easier to fix «, 8 and Ay and to determine A; and « such that (5.7) is solved. Actually, by doing
so, we impose, alongside o and 3, one of the jump mid-points £2 and try to locate the second
jump mid-point ¢! and « such that (1.7) possesses a standing two-pulse. Of course, we could
also choose to start with «, 8, and A; and determine A and v that satisfy (5.7).

The zero of Hy (A1, As), for which 0 < A; < As, is given by the relation

VAL + Ay = /=B]a. (5.8)

When we implement this into formula (5.7) for Hy(A1, A3) we find, after some manipulation, a
unique v:

fy:a—2a(1+A§)1/—aﬁA2—ﬁ(1+3A2+Ai2—\/—%— —%). (5.9)

However, there are also restrictions on the choice of A;. We need 0 < A; < Ay < 1. Therefore,

—i§<A2<min{—§,l}. (5.10)

We conclude that if Ao satisfies (5.10), there is a (o, 8, 7)-parameter combination such that (5.7)
is satisfied, i.e., such that a two-pulse solution exists. However, if (5.10) cannot be satisfied —
which is the case when |4a| < |3, there are no such two-pulse solutions.

This nonexistence result can be generalized to all D > 1:

Corollary 5.2 Let sgn(a) # sgn(B). There is an open region in (a, 3,7, D)-space for which
homoclinic two-pulse solutions as described in Theorem 5.1 exist. However, if |a|D? < |B|, then
there are no such two-pulse solutions.

Proof. We start again by observing that G1(A;, A2) = 0 does not depend on +, and that the v
in Go(Ay, A2) = —2v only shifts G2(A;, A2) up or down. So, again instead of solving A; and As
in terms of a, 8 and v via (5.6), we solve this equation for given «, 3 and As with the unknown
parameters A; and 7.

The condition 0 < A; < Ay < 1 yields the following generalization of (5.10)

<a’f)2> T Ay < min { (i) o ,1} . (5.11)

Here, the latter inequality ensures Ay € (0, 1), and the former implies A; < A,. This interval is
empty when |a|D? < |B]. O

5.3 Asymptotics for D — oo

In this section, we analyze the large D asymptotics of solutions of equation (5.6). From Figure 13,
we observe that, over a large portion of the interval As € (0,1), the solution curves for A; lie
near the axis, and the solution curves for 7 lie near the lower dashed curve. Moreover, these
curves approach their respective asymptotes as D increases. We establish this result precisely in
the following lemma:
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Ay A=Ay
’ a+p

Ay

Figure 13: In the left frame, A is plotted as function of As for several values of D. In the right
frame, 7 is plotted as function of Ay for the same values for D. The dashed curve represents
the asymptotic behavior for D large and is given by (5.12). The two-pulse orbits are typically
created or annihilated in a saddle-node bifurcation — see Section 7, Figure 15.

Lemma 5.3 Assume that « > 0 > v > 3. Then, for strictly O(1) values of Ay € (0,+/—8/a), as
measured with respect to the asymptotically small parameter 1/ D, the solutions A; = Ai(«, 8, Aa, D)
and v = y(«, B, Aa, D) of equation (5.6) satisfy, to leading order,

D 2
A1:<1—1/—%A2> , 7:—a<\/—§—A2> as D — oo. (5.12)

The lower dashed curve in the right frame of Figure 13 is this parabola of v as function of A,.
It is also useful to combine the results of (5.12) of this lemma into expressions for A; and A, in
terms of the given system parameters. The result is, to leading order,

(N B [
Al_(ﬁ) ) AQ_ o a-

We also remark that in both frames there is a boundary layer at As = A;, which is why we
require Ay to be strictly of O(1) for this result and we recall that the existence construction
requires that A; < As. In the boundary layer, the graph of A; limits on the diagonal, with a
slope of —1, while the graph of ~ is nearly vertical. Although the asymptotic analysis is not
too involved, we refrain from going into the details here. Nevertheless, we notice that, by (5.6),
v = a+ [ in the limit A, | Ay, see Figure 13.

Proof of Lemma 5.3 We observe that, for A, strictly of O(1) in (0,1), we may assume that
Ay =CP, (5.13)

to leading order, for some C' € (0,1). Indeed, if one instead assumed that Ay = ad” to leading
order, for 6 = 1/D and for some o > 0, then from the first equation in (5.6) one would find that
As = 0 to leading order, which is a contradiction. Hence, with the assumption (5.13), the first
equation in (5.6) becomes

Al +B(C —1)? =0,

to leading order, where we used that A%/D =1+0(1/D) for A2 € (0,1), and that (1/D) log(42) <

C. Solving, one finds, to leading order,

A = <1 - \/%@)D , (5.14)
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which is precisely the first formula of (5.12).

With the asymptotics for A; in hand, one may use the second formula in (5.6) to find the
asymptotics for . To leading order,

1 a 2 o
= - |aA2 1-(1-,/-=4 —28(1-,/-=A4
! 2““5((\/52)) ’6<VB2>
Simplifying the right member, we find precisely the asymptotic result (5.12) for ~. O

To conclude this section on the large D asymptotics, we comment briefly on the form of the
W profile for stationary two-pulse solutions in the interval between the two pulses. From the
above asymptotics, we find, to leading order,

e =0(1), ef?=—logAy=0(1), et =—Dlog <1 - ‘/—%A2> —0(D).  (5.15)

Hence, from (5.3), we find in region 5, to leading order,
wap(€) = —e BETED) 4 o BEHED) L o FEED) _ oB(6-€)
= 2 —%AQ -1 (5.16)

— _ ol
_12\6.

Therefore, for each Az € (0,1/—03/a), the W-component is constant to leading order, where the
constant is given by (5.16). Moreover, we observe that W takes on all of the values in the interval
(—1,1), since the above analysis applies for all A5 € (0,+/—03/a).

A stability analysis similar to that presented in [11] shows that the two-pulse solutions are stable
for parameter combinations in the ‘boundary layer’. However, they are unstable for parameter
values near the dashed curve in the asymptotic regime studied in Lemma 5.3.

6 The two-component model

In this section, we investigate the two-component (U, V)-subsystem of the three-component
model, that is, we send D to infinity and assume that the W-component is constant at W = —1
everywhere in the PDE (1.6). The PDE model reduces to

{ Ut = 62Uzz + U- U3 —E(OZQV + ’}/2) (6 1)

7-2‘/t = sz + U~ Va

with the same assumptions as before, 0 < ¢ < 1,0 < 72 < 1/&% and as,72 € R. Note that
the notation for the parameters has the following correspondence with the parameters of the
three-component model: oy = a, 75 = 7 and vy, =y — (.

It can be shown with the same techniques used in this article that for 7, = O(1) the two-
component system has standing one-pulse solutions homoclinic to Py, = (u,.,0,u;,0) with

uy . = =1+ e(az — 72) + O(?) if there exists an A € (0, 1) satisfying

062A2 =72 + O(\E) )

recall (2.22). Hence, we immediately observe that necessary conditions for a standing pulse ho-
moclinic to P;_ to exist are that sgn(az) = sgn(yz2) and 0 < |y2| < |az|. Also, the existence of
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travelling pulse solutions to P, for large 75 can be proved, and in the end it boils down to solving
a system of equations which is a simplification of (3.13). Moreover, when we increase T from an
O(1)-parameter to an O(e~2)-parameter a travelling pulse solution bifurcates from a standing

pulse solution at (72)o,« = Eiz(f'z)o,* = 6%%\/5 (az — 72 + 72 log (Z—i)) This bifurcation can be
supercritical, as well as subcritical. See also Section 4 and especially the proof of Lemma 4.2.

Finally, the two-component system possesses no symmetric standing two-pulse solutions to P; ..
Physically, this can be explained by the fact that the model has too few free constants (too few
dimensions). The absence of two-pulse solutions is also plausible when we look at Theorem 5.1.
There only exists a standing two-pulse solution if at least sgn(a) # sgn(B) and for the two-
component system this condition cannot be fulfilled because there is no equivalent parameter for
[ in the two-component system.

To summarize, we have shown that the two-component model also possesses stationary and
travelling pulse solutions. However, it does not support two-pulse solutions.

Remark 6.1 There are two ways in which the three-component system (1.6) may limit on a
two-component system, either by considering W — V, associated to D | 1, or by W — Wy,
a constant when D — oo. In the former case one has to make the additional assumption that
7 = 6. Since in most studies of systems like (1.1)/(1.6) D > 1 and 7 > 6, we do not consider
this limit here.

If one considers the limit D — oo in Theorems 2.1 and 3.1 for one-pulse solutions, then it
immediately follows that W — —1 uniformly on R — see for instance (2.21). However, since
the two-component limit cannot have standing two-pulse solutions, taking the limit D — oo in
Theorem 5.1 is less straightforward. In fact, this limit has already been discussed in section 5.3
(under the assumption that A; = O(1)). It follows from (5.15) that the width of the pulses
in the two-pulse solution increases linearly with D, while the distance between the pulses ap-
proaches a finite limit. Thus, on bounded intervals, the two-pulse solution of the three-component
system limits on a one-pulse solution of a two-component (U, V)-system that is homoclinic to
(U, V) = (+1,41) (with W — 1 — 2,/v/8, the constant value given in (5.16)).

7 Simulations, conclusions and discussion

7.1 Simulations

In this section, we show the results of some numerical simulations to further illustrate the theory
presented in this article and also to illustrate some of the basic pulse interactions and instabilities.
These simulations are carried out using the numerical software presented in [1].

We already illustrated a stationary one-pulse solution in the left frame of Figure 1. Therefore,
we begin here with some travelling pulses of the type constructed in Section 3. The pulses shown
in Figure 14 exist for values of 7 greater than the theoretically-predicted value 7, ¢ = 0.59 for the
bifurcation in which travelling pulses are created (which translates into an unscaled 7, o = 59). In
the left frame, the travelling pulse collides with its mirror image pulse at the boundary, since the
boundary conditions are of homogeneous Neumann type, and afterwards they repel each other.
By contrast, in the right frame, the pulse and its mirror image collide and then annihilate. The
changeover from repulsion to annihilation after the collision occurs at 724" = 112. Finally, we
observe that the numerically-observed value of the bifurcation to travelling waves is 7]"*™ = 103,
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Figure 14: Stable travelling pulses. The parameter values are (a, 3,7, D,0,¢) = (6,3,4,2,1,0.1),
and 7 is the bifurcation parameter. Here, we plotted a bouncing travelling pulse solution for
7 =110 and an annihilation of a travelling pulse for 7 = 115 .
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which is within the relative error of magnitude O(1/¢) = O(10) of the leading order theoretical
value 7,0 = 59. Of course, in these simulations ¢ is not yet really small, and hence we checked
that the value of 7] decreases toward the value predicted by the leading order theory as ¢
is decreased. For example, for ¢ = 0.01, we find 772%™ = 5.95 x 10% (compared to 5.9 x 10°
theoretically).

Next, we illustrate the theoretical results for stationary two-pulse solutions of (1.6), as derived
in Section 5. For each of the four values of v = 0.8,0.75, —0.25, —0.3, Figure 15 shows the corre-
sponding stationary solution. Based on the simulations for these parameter values, we find that
the homogeneous background state U = —1 undergoes a subcritical bifurcation into a two-pulse
solution at y™*™ = 0.78. Likewise, due to the reversibility symmetry, the homogeneous state
U = +1 bifurcates supercritically into a two-pulse solution at y**™ = —0.78, though we do not
show this. In addition, we observe that, as we decrease v from 0.78, the width of the pulses
increases, until there is a bifurcation at y"*™ = —0.27 at which the pulses coalesce, and the
solution is U = +1 everywhere, except inside an interior layer and inside the layers at the bound-
aries of the computational interval. This solution is a spatially periodic solution. Moreover, the
observed value for this coalescence of the pulses agrees well with the theoretically-predicted value
of v = —0.31 for the saddle-node bifurcation, which occurs at the minimum in the curve shown
in the right frame of Figure 13.

One of the most commonly-encountered bifurcations that the pulse solutions undergo is a super-
critical Hopf bifurcation in which the widths, and heights, of the pulses oscillate periodically in
time. In Figure 16, we show a breathing one-pulse in the left frame, and a breathing two-pulse
in the right frame. For the one-pulse solution (with e = 0.1), the Hopf bifurcation occurs at
THY™ = 47. Moreover, we find that the breather dies out for 7 = 49.8. For the two-pulse solution
(with e = 0.01), the Hopf bifurcation takes place at 3% = 4590. Moreover, at 7 = 5060, the
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Figure 15: Plots of the stationary solutions of the three-component model (1.6) for four val-
ues of v: v = 0.8,0.75,—0.25, —0.3. The values of the other parameters are (a,3,D,1,0,2) =
(2,-1,5,1,1,0.01).
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Figure 16: Stable breathing one-pulse and two-pulse solutions. For the simulation shown in the
left frame, 7 = 49.7, and the other parameters are («, 3,7, D,0,¢) = (6,3,4,10,1,0.1). Also, we
note that the interval used in the simulation is £ € [-100, 100], however we have displayed only
a subinterval to better display the breathing behavior. For the simulation shown in the right
frame, 7 = 5000, and the other parameters are («, 3,7, D,0,¢) = (2.2,—1,0,10,1,0.01). Also,
we note that the interval used in the simulation is £ € [—-1000, 1000].

breathing two-pulse solution becomes unstable and dies out. We note that we have observed
breathing two-pulse solutions for which the pulse widths breath in an antisymmetric manner.

Scattering of pulses is also observed in the three-component model (1.7). In the left frame of Fig-
ure 17, we show the V-component of a two-pulse solution in which the pulses initially approach
each other, spend a substantial amount of time at a nearly constant distance from each other
with a significantly-decreased amplitude, and then regain their original amplitudes and repel
each other. The pulses continue to repel each other until they reflect off the boundary, and the
process repeats. A similar phenomenon has been observed in [16, 17]. There the unstable, sta-
tionary two-pulse, which the two-pulse data approaches, is called a ‘scattor’ (or ‘separator’). The
importance of a scattor stems from the observation made in [16, 17] that the forward evolution
of two-pulse data that approaches it is determined by where that data lies with respect to the
stable and unstable manifolds of the scattor or separator solution. The relation between scattors
and the two-pulse solutions constructed in this article is the subject of future investigation.

We emphasize that the time interval shown in Figure 17 is long and that the length of time
where the two pulses are near to each other is also long in comparison to the time interval over
which the pulses move an O(1) distance. Moreover, we found that the duration of this time
interval can be changed by varying the parameter values. Finally, it is worth noting that, during
the time that the two pulses are near the boundaries, they are also near their counterparts across
the boundary, in what also appears to be a scattor state.
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Figure 17: Scattering of two pulses. In the left frame, we show the V-component over a long
time interval, and in the right frame we show the U-component during the third central scat-
tering event (not shown for the V-component). The parameter values are (o, 3,v,D,7,60,¢) =
(6,3,2,2,6500,1,0.01).

To conclude this brief section illustrating some of the pulse dynamics, we show the spatio-
temporal evolution of four-pulse initial data in Figure 18. Initially, the four pulses approach each
other. Then, they start to breath in a time-periodic manner, until finally the middle two pulses
die out and the two remaining pulses become stationary. In the right frame, we have zoomed
in on the time interval containing the last few breathing periods, and here the destabilization
process is visible in detail. The maximal widths per period of the inner two pulses increase as
the time of annihilation gets closer and closer, while the minimal widths decrease. One can see
that during the final oscillation the maximal pulse widths exceed the lengths of the gaps between
the pulses. Finally, stepping back out to the time scale shown in the left frame, one sees that the
time asymptotic state is a stable two-pulse solution of the type constructed in Section 3, with
pulse centers well inside £ = —1000 and £ = 1000 on the domain & € [—2000, 2000].

7.2 Conclusions and discussion

In this article, we established the existence of stationary and travelling one-pulse solutions of the
three-component model (1.6), as well as the existence of stationary two-pulse solutions. The main
results are presented in Theorem 2.1, Lemma 2.2, and Theorem 3.1 for the one-pulse solutions,
and in Theorem 5.1 for the two-pulse solutions. Moreover, we studied various bifurcations of these
solutions, including the saddle-node bifurcation in which the stationary one-pulse solutions are
created (see Theorem 2.1), the bifurcation from stationary to travelling one-pulses (showing that
this may be either subcritical or supercritical depending on the system parameters, see Lemma
4.1 and Corollary 4.2), and the saddle-node bifurcation of two-pulse solutions, see Figure 13.

In the course of this analysis, we also showed that this three-component system constitutes an

ideal system on which to study pulse dynamics. On one hand, it is sufficiently simple for analysis
using geometric singular perturbation theory, with all of the reaction terms, except for one, being
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linear. On the other hand, it is sufficiently nonlinear to support rich pulse dynamics. Indeed, the
extent of this richness was first demonstrated in [16, 17, 19, 23], and these interacting pulse solu-
tions exist also for the scaled equations (1.6) studied here. We think that the analysis presented in
this work offers a useful starting point for the analysis of these various pulse interaction scenarios.

Finally, we considered the limit in which the three-component system (1.6) reduces to the more
classical two-component system (6.1). This two-component system is almost the same as the
FitzHugh-Nagumo equations, except that the second species (inhibitor) also diffuses here. It
is shown that the two-component system possesses only the one-pulse solutions, and not the
two-pulse solutions of the type studied here. Hence, the addition of the third component, as
introduced in [23], is essential for the existence of two-pulse solutions.

Stability of the solutions studied here is an important topic, as is demonstrated for instance
by the bifurcations to breathing pulses shown in Figure 16. This is the topic of a companion
paper [11], in which we use the Evans function and the NonLocal Eigenvalue Problem method
[3] to carry out this analysis.

The methods and analysis of this article can be extended to carry out the analysis of pulse
solutions in the three-component model with heterogeneity that is studied in [25]. There, het-
erogeneity is introduced in (1.1) by making the constant term in the U-component vary in space
according to a smoothed out step function. The heterogeneity induces interesting new pulse dy-
namics, such as rebounding off defects, pinning by defects, and penetration of defects, as observed
in numerical simulations. The invariant manifold theory from the field of geometric singular per-
turbation theory that we have used in this article, as well as the Melnikov conditions that we
used, can also be applied to these types of heterogeneous systems, so that the pulse solutions
may be constructed. In conjunction with these observations, we point to an earlier example in
which geometric singular perturbation theory was used to establish the existence of standing wave
solutions in a RD model of the Fabry-Perot interferometer, which involves spatially-dependent
coefficients. See [22].

Acknowledgments

The authors thank Y. Nishiura for introducing us to the three-component model and for stim-
ulating conversations. We thank P. Zegeling for valuable assistance with the software [1] used
in the numerical simulations. A.D., P.v.H. and T.K. gratefully acknowledge support from the
Netherlands Organization for Scientific Research (NWO). T.K. gratefully acknowledges support
from the National Science Foundation through grant DMS-0606343, and thanks the CWI for its
hospitality.

References

[1] J.G. Blom, P.A. Zegeling [1994], Algorithm 731: A Moving-Grid Interface for Systems
of One-Dimensional Time-Dependent Partial Differential Equations, ACM Transactions in
Mathematical Software 20, 194-214.

[2] M. Bode, A.W. Liehr, C.P. Schenk, and H.-G. Purwins [2002], Interaction of dissipative
solitons: particle-like behavior of localized structures in a three-component reaction-diffusion
system, Physica D 161, 45—66.

41



3]

[18]

[19]

[20]

[21]

A. Doelman, A. Gardner, and T.J. Kaper [2001], Large stable pulse solutions in reaction-
diffusion equations, Ind. Univ. Math. J. 50(1), 443-507.

A. Doelman, A. Gardner, and T.J. Kaper [2002], A Stability Index Analysis of 1-D patterns
of the Gray-Scott Model, Memoirs of the AMS 155(737).

A. Doelman, D. Iron, and Y. Nishiura [2004], Destabilization of fronts in a class of bi-stable
systems, SIAM Math. J. An. 35(6), 1420~1450.

A. Doelman, T.J. Kaper, and H. van der Ploeg [2001], Spatially periodic and aperiodic
multi-pulse patterns in the one-dimensional Gierer-Meinhardt equation, Meth. Appl. An.
8(3), 387-414.

J.W. Evans, N. Fenichel, and J.A. Feroe [1982], Double impulse solutions in nerve axon
equations, STAM J. Appl. Math. 42, 219-234.

N. Fenichel [1971], Persistence and smoothness of invariant manifolds for flows, Indiana
Univ. Math. J. 21, 193-226.

N. Fenichel [1979], Geometric singular perturbation theory for ordinary differential equa-
tions, J. Diff. Eq. 31, 53-98.

S. Hastings [1982], Single and multiple pulse waves for the FitzHugh-Nagumo equations,
SIAM J. Appl. Math. 42, 247-260.

P. van Heijster, A. Doelman, and T.J. Kaper, Pulse dynamics in a three-component system:
stability and bifurcations, to appear in Physica D.

C.K.R.T. Jones [1995], Geometric singular perturbation theory, in Dynamical systems, Mon-
tecatibi Terme, 1994, Lecture Notes in Mathematica 1609, R. Johnson (ed.), Springer-
Verlag.

C.K.R.T. Jones, and N. Kopell [1994], Tracking invariant manifolds with differential forms
in singularly perturbed systems, J. Diff. Eq. 108(1), 64-88.

C.K.R.T. Jones, T.J. Kaper, and N. Kopell [1996], Tracking invariant manifolds up to ex-
ponentially small errors, STAM J. Math. An. 27(2) 558-577.

T.J. Kaper [1999], An introduction to geometric methods and dynamical systems theory for
singular perturbation problems, Proc. of Symposia in App. Math. 56, 85-131.

Y. Nishiura, T. Teramoto, and K.-I. Ueda [2003], Scattering and separators in dissipative
systems, Phys. Rev. E 67, 056210.

Y. Nishiura, T. Teramoto, and K.-I. Ueda [2005], Scattering of traveling spots in dissipative
systems, CHAOS 15(4), 047509.

Y. Nishiura, T. Teramoto, X. Yuan, and K.-I. Ueda [2007], Dynamics of traveling pulses in
heterogeneous media, CHAOS 17(3), 031704.

M. Or-Guil, M. Bode, C.P. Schenk, and H.-G. Purwins [1998], Spot bifurcations in three-
component reaction-diffusion systems: the onset of propagation, Phys. Rev. E 57, 6432—-6437.

A.P. Rasker [2005], Pulses in a bi-stable reaction-diffusion system, MA thesis, KdV Inst.,
Univ. Amsterdam, the Netherlands.

C. Robinson [1983], Sustained resonance for a nonlinear system with slowly-varying coeffi-
cients, SIAM J. Math. An. 14, 847-860.

42



[22]

[23]

[24]

[25]

J. Rubin and C.K.R.T. Jones [1998], Existence of standing pulse solutions to an inhomoge-
neous reaction-diffusion system, J. Dyn. Diff. Eq. 10, 1-35.

C.P. Schenk, M. Or-Guil, M Bode, and H.-G. Purwins [1997], Interacting Pulses in Three-
component Reaction-Diffusion Systems on Two-Dimensional Domains, PRL 78 (19), 3781
3784.

L. Yang, A.M. Zhabotinsky, and I.R. Epstein [2006], Jumping solitary waves in an au-
tonomous reaction-diffusion system with subcritical wave instability, Phys. Chem. Chem.
Phys. 8, 4647-4651.

X. Yuan, T. Teramoto, and Y. Nishiura [2007], Heterogeneity-induced defect bifurcation and
pulse dynamics for a three-component reaction-diffusion system, Phys. Rev. E 75, 036220.

43



