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Abstra
tIn this arti
le, we analyze the three-
omponent rea
tion-di�usion system originally developedby S
henk, Or-Guil, Bode, and Purwins in PRL 78, 3781{4 (1997). The system 
onsists ofbistable a
tivator-inhibitor equations with an additional inhibitor that di�uses more rapidlythan the standard inhibitor (or re
overy variable). It has been used by several authors asa prototype three-
omponent system that generates ri
h pulse dynami
s and intera
tions,and this ri
hness is the main motivation for the analysis we present. We demonstrate theexisten
e of stationary one-pulse and two-pulse solutions, and travelling one-pulse solutions,on the real line, and we determine the parameter regimes in whi
h they exist. Also, forone-pulse solutions, we analyze various bifur
ations, in
luding the saddle-node bifur
ationin whi
h they are 
reated, as well as the bifur
ation from a stationary to a travelling pulse,whi
h we show 
an be either sub
riti
al or super
riti
al. For two-pulse solutions, we showthat the third 
omponent is essential, sin
e the redu
ed bistable two-
omponent systemdoes not support them. We also analyze the saddle-node bifur
ation in whi
h two-pulsesolutions are 
reated. The analyti
al method used to 
onstru
t all of these pulse solutionsis geometri
 singular perturbation theory, whi
h allows us to show that these solutions liein the transverse interse
tions of invariant manifolds in the phase spa
e of the asso
iated6-dimensional travelling wave system. Finally, as we illustrate with numeri
al simulations,these solutions form the ba
kbone of the ri
h pulse dynami
s this system exhibits, in
ludingpulse repli
ation, pulse annihilation, breathing pulses, and pulse s
attering, among others.Keywords: three-
omponent rea
tion-di�usion systems; one-pulse solutions; travelling pulsesolutions; two-pulse solutions; geometri
 singular perturbation theory; Melnikov fun
tion.AMS (MOS) subje
t 
lassi�
ations: Primary: 35K55, 35B32, 34C37 Se
ondary: 35K40.1



1 Introdu
tion
Spatially-lo
alized stru
tures, su
h as fronts, pulses and spots, have been found to exhibit a widevariety of interesting dynami
s in dissipative systems. These dynami
s in
lude repulsion, anni-hilation, attra
tion, breathing, 
ollision, s
attering, self-repli
ation, and spontaneous generation.The ri
hness of the observed dynami
s typi
ally in
reases with the 
omplexity and the size of thesystem. Lo
alized stru
tures, that do not exist in rea
tion-di�usion (RD) systems with a smallnumber of 
omponents, may readily exist when more 
omponents and more terms are added tothe system. Likewise, solutions that are unstable in small or simple RD systems may be
omestable with su
h additions.The aim of this arti
le is to report on the mathemati
al analysis of a paradigm example thatexhibits this in
reased ri
hness. In parti
ular, we study the three-
omponent model introdu
edin [23℄ and studied further in [2, 16, 18, 19, 24, 25℄. In one spa
e dimension, the equations are8<: Ut = DUUxx + f(U)� �3V � �4W + �1�Vt = DV Vxx + U � V�Wt = DWWxx + U �W : (1.1)
where we used the notation of [16℄ and we note that (1.1) has the reversibility symmetry x! �x.Here, the (U; V )-subsystem is a 
lassi
al, bistable two-
omponent RD system, whi
h exhibits dy-nami
s similar to the 
lassi
al FitzHugh-Nagumo equations (although here DV 6= 0, whereasDV = 0 in FHN), and the variable W denotes an added inhibitor 
omponent. We will show thatit is responsible for in
reasing the ri
hness of the types of solutions the model possesses.In (1.1), U; V , and W are real-valued fun
tions of x 2 R and t 2 R+ , and the subs
ripts in-di
ate partial derivatives. The parameters � and � are positive 
onstants, and the primaryinterest is in using � as the bifur
ation parameter. The di�usivities of the respe
tive 
omponentsare denoted by DU ; DV ; and DW , f(U) is a bistable 
ubi
 rea
tion fun
tion (often taken to bef(U) = 2U � U3), �3 and �4 denote rea
tion rates, and �1 denotes a 
onstant sour
e term.The fundamental dis
overy reported in [23℄ is that, in this three-
omponent model, the added
omponentW 
an stabilize stationary and travelling single spot solutions and multi-spot solutionsin two spa
e dimensions, whi
h otherwise are inherently unstable in the 
lassi
al two-
omponent(U; V )-bistable model. This stabilization was shown to o

ur when DW is suÆ
iently large rel-ative to DU and DV , be
ause then the presen
e of W prevents spots from extending in thedire
tions perpendi
ular to their dire
tions of motion. In this manner, W suppresses the insta-bility that spots undergo in two-
omponent systems [23℄.The dynami
s of pulses in the one-dimensional model (1.1) is also known to be ri
her thanin the 
orresponding one-dimensional version of the two-
omponent model. Pulses 
ollide, s
at-ter, annihilate, among others, as has been shown in [16, 17℄, whereas the dynami
s of pulsesin the restri
ted two-
omponent system is mu
h less ri
h. A spe
ial 
lass of unstable two-pulsesolutions, 
alled s
attors or separators, is identi�ed for (1.1) in [16, 17℄. It is shown that theirstable and unstable manifolds organize the evolution in phase spa
e of all nearby solutions. Morepre
isely, during the 
ourse of a 
ollision between two pulses, they 
onverge to a separator state,and the lo
ation of the initial data relative to the stable and unstable manifolds of this separatordetermines how and when the pulses s
atter o� ea
h other. Furthermore, in some parameterregimes, the s
attering pro
ess may be dire
ted by a 
ombination of two separators, where the
olliding pulses �rst approa
h one separator, spend a long time near it, and then approa
h ase
ond separator state, and then �nally repel or annihilate, see [16, 17℄.Our work is inspired by the results from [23, 19℄ and [16, 17℄. We 
arry out a 
omplementary,2



rigorous analysis of the existen
e of 
ertain pulse solutions for a s
aled version of the three-
omponent model, see (1.6) below. The model has a ri
h geometri
 stru
ture that will be studiedusing geometri
 singular perturbation theory, and we note that the appli
ation of this theory is
hallenging due to the fa
t that the asso
iated ordinary di�erential equations are 6-dimensional.
1.1 Statement of the model equationsIn [2, 16, 18, 19, 23, 24, 25℄, the numeri
al values of the di�usivities of the three spe
ies di�er byseveral orders of magnitude. For example, in [16℄, the values are DU = 5�10�6, DV = 5�10�5,and DW = 10�2. Therefore, we are motivated to introdu
e a s
aled spatial variable~x = xpDV : (1.2)For 
omputational 
onvenien
e we also s
ale out the fa
tor two in the nonlinearity f(U) =2U � U3. Therefore, we introdu
e~t = 2t ; ( ~U; ~V ; ~W ) = 12p2(U; V;W ); (~� ; ~�) = 2(�; �); (~�1; ~�3; ~�4) = 12 ( 12p2�1; �3; �4): (1.3)In terms of these s
aled quantities, the system (1.1) is8<: ~U~t = "2 ~U~x~x + ~U � ~U3 � ~�3 ~V � ~�4 ~W + ~�1~� ~V~t = ~V~x~x + ~U � ~V~� ~W~t = D2 ~W~x~x + ~U � ~W ; (1.4)
with the nondimensional di�usivities "2 = DU=(2DV )� 1 and D2 = DW =DV � 1.As to the parameters in the rea
tion terms, the numeri
al values that are used in [16℄ are(�1; �3; �4) = (�7; 1; 8:5), and very similar values are used in [23℄. While these are O(1) withrespe
t to ", it is helpful to �rst study the system with O(") values of these parameters; i.e., tointrodu
e s
aled parameters, as follows:~�1 = �"
; ~�3 = "�; ~�4 = "�; (1.5)where �; �, and 
 are O(1) quantities and where we have taken �1 to be negative, sin
e it isnegative in all of the above 
ited arti
les.The rationale for this 
hoi
e of s
alings (1.5) is threefold. First, this 
hoi
e was made to fa
ilitatethe mathemati
al analysis, sin
e in this regime the terms in the U -equation 
orresponding to thesour
e and to the 
oupling from the inhibitor 
omponents are weak, yet not too weak. In fa
t,the e�e
ts of the sour
e and the 
oupling terms are too weak when they are of O("2) [5℄. Se
ond,it turns out that mu
h of the ri
h pulse dynami
s exhibited by system (1.4) exists also when theparameters have O(") values, as we will show in this arti
le (see also [20℄). Therefore, one mightreasonably hope to understand the origins of the dynami
s observed in [16℄ by beginning withthe present analysis. Third, in the numeri
al simulations of [23, 16℄, whi
h were done on boundeddomains, the W variable stays near �0:8, approximately. Hen
e, in a very approximate (andrough) sense one might argue, as follows, that there is an e�e
tive impa
t of the parameters in theU -equation of (1.4) that is of O("). Sin
e ~�3 = 0:5 and " = 110p5 � 0:22, the e�e
t of V in thisequation 
an indeed be 
onsidered to be O("). Moreover, by the s
alings (1.3), ~�4 ~W � ~�1 � 0:07for W = �0:8 (and �1;4 as in [16℄), whi
h is 
learly also O("). Thus, it appears that the impa
tof the sour
e and 
oupling terms are indeed small.
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Figure 1: Stable stationary one-pulse and two-pulse solutions of system (1.6) obtained vianumeri
al simulation. For the one-pulse the system parameters where (�; �; 
;D; �; �; ") =(3; 1; 2; 5; 1; 1; 0:01), and for the two-pulse we had (�; �; 
;D; �; �; ") = (2;�1;�0:25; 5; 1; 1; 0:01).
In light of the above s
alings, the model equations that we study are8<: Ut = "2Uxx + U � U3 � "(�V + �W + 
)�Vt = Vxx + U � V�Wt = D2Wxx + U �W ; (1.6)
where we dropped the tildes. Furthermore, we require that 0 < " � 1, 0 < �; � � 1="3, D > 1,and �; �; 
 2 R , where the upper bound on � and � is derived in Se
tion 3.1. Moreover, weassume that the solutions (U(x; t); V (x; t);W (x; t)) are bounded over the entire domain.At various stages throughout the analysis, we will see that it is also useful to examine thethree-
omponent model in a stret
hed (or `fast') spatial variable � = x=":8><>: Ut = U�� + U � U3 � "(�V + �W + 
)�Vt = 1"2V�� + U � V�Wt = D2"2 W�� + U �W : (1.7)
We refer to this system as the fast system, and to system (1.6) as the slow system.The system (1.6) or (1.7) is well-suited as a paradigm for the analysis of three-
omponent RDsystems. On the one hand, it is suÆ
iently nonlinear and 
omplex so that it supports a ri
hvariety of lo
alized stru
tures, and on the other hand it is suÆ
iently simple, with linear rea
tionfun
tions in the se
ond and third 
omponents and with linear 
oupling, so that mu
h of thedynami
s 
an be 
omputed analyti
ally, in
luding 
ertain bifur
ations. See also [11℄. In thisrespe
t, we believe that the results presented here also provide a basis to establish a theory ofintera
ting pulses in this paradigm model.
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1.2 Outline of the main resultsWe begin in Se
tion 2 with examining the stationary, or standing, one-pulse solutions. Forthese solutions, the U -
omponent 
onsists of a front, whi
h 
onne
ts the (quies
ent) state U =�1 +O(") to the (a
tive) state U = 1 +O("), and a ba
k, whi
h provides the opposite 
onne
-tion, 
on
atenated together to form a pulse (or homo
lini
 orbit). Both the front and the ba
kare sharp, so that the pulse is highly lo
alized, due to the asymptoti
ally small value of "2 in(1.6). The V -
omponent of the one-pulse solutions 
onsists of a smooth pulse that is 
enteredon the middle of the interval in whi
h the U -
omponent is in the a
tive state and that variesover slightly wider interval than the U -pulse. Finally, the W -
omponent also 
onsists of a single,smooth pulse, but it varies on a wider interval than either of the other two 
omponents due tothe fa
t that D > 1. See Figure 1. The standing one-pulse solutions are formally 
onstru
tedin Se
tion 2.2. Then, we make this 
onstru
tion rigorous in Theorem 2.1, whi
h states that thethree-
omponent model (1.6) possesses standing one-pulse solutions whenever the system param-eters satisfy (2.22). See Se
tion 2.3 for the statement of this theorem and Se
tion 2.4 for its proof.Next, we analyze the existen
e of travelling one-pulse solutions. This analysis, presented inSe
tion 3, follows the same two-step pro
edure: we �rst 
onstru
t solutions formally (see Se
-tion 3.1) and then we prove their existen
e rigorously (see Se
tions 3.2 and 3.3). The main resultis Theorem 3.1, whi
h states that there exist travelling pulse solutions whenever either � or � (orboth) is O(1="2) and the system parameters satisfy (3.13).Given these results about standing and travelling one-pulse solutions, it is of interest to in-vestigate the bifur
ation of the former into the latter. We do so in Se
tion 4. The leading orderresults are given by (4.2) in Se
tion 4.1, and then the rigorous, high-order asymptoti
s for themain bifur
ation parameter � as a fun
tion of the other parameters is summarized in Lemma 4.1,see Se
tion 4.2. It turns out that this bifur
ation 
an be super
riti
al, as well as sub
riti
al, de-pending on the parameters, see Corollaries 4.2 and 4.3. This result 
ontrasts with the bifur
ationresult for the two-dimensional version of this model, obtained in [19℄, where it was shown thatthis bifur
ation is super
riti
al.Having 
ompleted our analysis of the one-pulse solutions, we next turn our attention to two-pulse solutions of (1.6). The main result is Theorem 5.1, whi
h guarantees the existen
e oftwo-pulse solutions whenever the system parameters satisfy (5.6). These two-pulse solutionshave U -
omponents that 
onsist of two 
opies of the U -
omponent of the single pulses, while theV - and W -
omponents exhibit two peaks as well, but are not near equilibrium in the intervalbetween their two peaks. See Figure 1. In this sense, the intera
tion between the pulses is semi-strong, a

ording to the terminology of [3℄. We also note that the pair of equations (5.6) is rather
omplex, and we present investigations of it when D = 2, and when D is general. Moreover, wegive the asymptoti
s of the key quantities as D !1. See Se
tions 5.2 and 5.3, respe
tively.After 
ompleting the analysis of these pulse solutions, we examine in Se
tion 6 the two-
omponent(U; V )-subsystem, obtained from (1.6) by setting W 
onstant at �1. This analysis of the two-
omponent system enables us to make observations about the di�eren
es between the two-
omponent and the three-
omponent systems. For instan
e, for the two-pulse solutions, weobserve that the in
lusion of the third 
omponent is essential, be
ause the two-
omponent ver-sion of the model 
annot possess two-pulse solutions. Simply put, there is not enough freedomin the two-
omponent model to permit for the 
onstru
tion of these solutions, and our analysisreveals why the third 
omponent { whi
h naturally makes the phase spa
e of the asso
iated ODEproblem 6-dimensional { 
reates suÆ
ient spa
e/freedom for their existen
e.In Se
tion 7.1 we present the results of a series of numeri
al simulations of (1.6). These simula-
5



tions 
on�rm the various analyti
al existen
e and bifur
ation results presented herein, and theyalso reveal the presen
e of ri
h pulse intera
tions, in
luding pulse re
e
tion and annihilation,stable breathing single and double pulses (whi
h bifur
ate from stationary pulse solutions), pulses
attering, as well as 
ombinations of these. See Figures 14{18. The single and double pulses an-alyzed in this arti
le are key building blo
ks to understand these ri
h pulse intera
tions. Finally,in Se
tion 7.2, we summarize our analysis and dis
uss some related items.Remark 1.1 The two-pulse solutions 
onstru
ted in [7, 10℄ for the FHN system di�er in severalrespe
ts from those 
onstru
ted here. In FHN, these are essentially 
opies of the one-pulsesolution, that must be very far apart, and that exhibit os
illatory behavior in the interval betweenthe pulses. The me
hanism responsible for their existen
e is related to the 
lassi
al Shilnikovme
hanism.Remark 1.2 Other examples of stabilization via the in
lusion of an additional 
omponent in amodel are given for instan
e by the Gray-S
ott and Gierer-Meinhardt systems. In these, one-pulse (homo
lini
) solutions that are unstable with respe
t to the s
alar RD equation for thea
tivator 
omponent are stabilized in 
ertain parameter regimes by the 
oupling to the equationfor the inhibitory 
omponent. The di�usive 
ux of inhibitor into the pulse domains helps tolo
alize the a
tivator 
on
entration, hen
e stabilizing one-pulse solutions, and we refer to [3, 4℄for the mathemati
al analysis using the Evans fun
tion and the stability index. Moreover, it isis worth noting that the 
onverse may also arise; namely in [5℄ it is shown that stable fronts of abistable, s
alar RD equation are destabilized through 
oupling to a se
ond 
omponent when theparameters are 
hosen so that either the essential spe
trum approa
hes the origin or an eigenvalueemerges from the essential spe
trum and be
omes unstable.
2 Stationary one-pulse solutions
2.1 Basi
 observationsFirst, we look at stationary pulses of system (1.7), i.e., we put (Ut; Vt;Wt) = (0; 0; 0). Byintrodu
ing p = u�; q = 1"v� and r = D" w�, we transform system (1.7) into a 6-dimensionalsingular perturbed ordinary di�erential equation (ODE)8>>>>>><>>>>>>:

u� = pp� = �u+ u3 + "(�v + �w + 
)v� = "qq� = "(v � u)w� = "D rr� = "D (w � u): (2.1)
Although � is the spatial variable, it will play the role of `time' in our analysis. The systempossesses two symmetries� ! ��; p! �p; q ! �q; r ! �ru! �u; p! �p; v ! �v; q ! �q; w ! �w; r ! �r; 
 ! �
: (2.2)Note that the �rst symmetry 
orresponds to the reversibility symmetry (x; �) ! (�x;��) in(1.6), (1.7), respe
tively. The �xed points of system (2.1) have p = q = r = 0, and u = v = wwith u3 + u(�1 + "(�+ �)) + "
 = 0. Solving this last equation yieldsu�" = �1� 12" (�+ � � 
) +O("2); u0" = "
 +O("2): (2.3)

6
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Figure 2: The phase portrait of the fast redu
ed Hamiltonian system (2.5).

Hen
e, there are three �xed points,P�" = (u�" ; 0; u�" ; 0; u�" ; 0); P 0" = (u0"; 0; u0"; 0; u0"; 0): (2.4)It 
an be 
he
ked [11℄ that P�" , respe
tively P 0" , represent stable, respe
tively unstable, trivialstates of the PDE (1.6),(1.7).The fast redu
ed system (FRS) is obtained by letting " # 0 in (2.1),� u� = pp� = �u+ u3 ; (2.5)as well as (v�; q�; w�; r�) = (0; 0; 0; 0), i.e., (v; q; w; r) � (v�; q�; w�; r�) with v�; q�; w�; r� 2 R
onstants. The �xed points of the FRS are given by (u; p) 2 f(�1; 0); (0; 0)g. The former aresaddles. The latter, (0; 0), is a 
enter that 
orresponds to P 0" and thus to an unstable trivialstate of (1.6) { we will therefore not 
onsider it.We de�ne the 4-dimensional invariant manifolds M�0 byM�0 := f(u; p; v; q; r; w) 2 R 6 : u = �1; p = 0g;whi
h are the unions of the saddle points over all possible v�; q�; w�; r� 2 R . Planar system (2.5)is integrable with HamiltonianH(u; p) = 12(p2 + u2)� 14(u4 + 1) ; (2.6)whi
h is 
hosen su
h thatH(u; p) = 0 onM�0 . The FRS possesses hetero
lini
 orbits (u0;�h (�); p0;�h (�))that 
onne
t the �xed points (u; p) = (�1; 0) to (u; p) = (�1; 0),u0;�h (�) = � tanh�12p2�� ; p0;�h (�) = �12p2se
h2�12p2��: (2.7)See Figure 2. The manifolds M�0 are normally hyperboli
, and they have 5-dimensional stableand unstable manifolds Wu;s(M�0 ) that are the unions of the four-parameter (v�; q�; w�; r�)-families of one-dimensional stable and unstable manifolds of the saddle points (u; p) = (�1; 0) in(2.5).Feni
hel's �rst persisten
e theorem [8, 12, 15℄ implies that for " small enough, system (2.1)7
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Figure 3: The 
ow generated by the (v; q)-subsystem on M�" and that of the (w; r)-subsystemon M+" . Note that stable/unstable manifolds lu;s;�v and lu;s;�w have the same slopes.
has lo
ally invariant slow manifolds M�" whi
h are O(") C1-
lose to M�0 , i.e., M�" 
an berepresented by M�" := fu = �1 + "u�1 (v; q; w; r; "); p = "p�1 (v; q; w; r; ")g ; (2.8)where the graphs u1 and p1 
an be 
omputed by an expansion in ",M�" = fu = �1� 12" (�v + �w + 
) +O("2); p = O("2)g : (2.9)The appli
ation of Feni
hel's se
ond persisten
e theorem establishes thatM�" have 5-dimensionalstable and unstable manifolds, W s;u(M�" ), that are O(") C1-
lose to their " = 0 
ounterpartsWu;s(M�0 ). Observe that the 
riti
al points P�" have 3-dimensional stable and unstable mani-folds Wu;s(P�" ) whi
h are 
ontained in Wu;s(M�" ).There are two slow redu
ed limit systems (SRS), both of whi
h we write in terms of the fastvariable �: one that governs the 
ow on M�" ,� v�� = "2(v + 1 +O("));w�� = "2D2 (w + 1 +O(")); (2.10)and one that governs the 
ow on M+" ,� v�� = "2(v � 1 +O("));w�� = "2D2 (w � 1 +O(")): (2.11)Observe that (v; q; w; r) = (�1; 0;�1; 0) + O(") are saddle points on M�" that 
orrespond tothe �xed points P�" (2.4). Also note that the v- and w-equations are de
oupled, so that bothODEs 
an be 
onsidered separately. See also Remark 2.1. Hen
e, we have a (v; q)-subsystemand a (w; r)-subsystem, both with two saddle points. These four saddle points ea
h have one-dimensional stable and unstable manifolds, lu;s;�v;w , that are given to leading order by`u;�v = fq = �1 + vg ; `u;�w = fr = �1 + wg ;`s;�v = fq = �1� vg ; `s;�w = fr = �1� wg : (2.12)In Figure 3, we sket
h some orbits on the manifolds M�" .
2.2 The 
onstru
tion of one-pulse solutions 
�h;j(�) homo
lini
 to P�"In this se
tion, we 
onsider symmetri
 standing one-pulse solutions 
�h;j(�) that are homo
lini
to P�" . Here, we present the formal derivation. Then, in se
tion 2.3, we formulate a theorem8



based on this analysis { Theorem 2.1, and we prove this theorem in Se
tion 2.4. This proof alsoestablishes the validity of the asymptoti
 analysis in this se
tion. Note that orbits homo
lini
 tothe other �xed point P+" 
an be obtained from these orbits by appli
ation of the symmetries (2.2).Before we start with the 
onstru
tion of 
�h;j(�), we introdu
e some notation. From Figures1 and 4, we noti
e that there are �ve di�erent regions, three in whi
h the leading order spatialevolution is given by the SRS (2.10) and (2.11), and two regions that are governed by the FRS(2.5). Sin
e the PDEs are translation invariant, we may parametrize the pulse solution so thatits u; v; w-
omponents are at a lo
al extremum at � = 0, i.e., p�h;j(0) = q�h;j(0) = r�h;j(0) = 0 {we will �nd that v�h;j(0) and w�h;j(0) are maxima, while u�h;j(0) is a (lo
al) minimum. Moreover,we introdu
e �� as the position of the `jump mid-point(s)', more pre
isely �� is su
h that 
�h;j(�)is half-way between the two slow manifolds at � = ��, i.e., u�h;j = 0 at � = ��� (2.2). We will�nd that �� = O( 1" ), but at this point of the analysis it is still undetermined. Next, we de�nethe two `fast intervals' I�f and the three `slow intervals' I�s ; I0s ,I�f := ���� � 1p" ;��� + 1p"� ; I+f := ��� � 1p" ; �� + 1p"� ;I�s := ��1;��� � 1p"i ; I0s := h��� + 1p" ; �� � 1p"i ; I+s := h�� + 1p" ;1� : (2.13)
Note that the 
hoi
e of the width for I�f of 2=p" is standard, but arbitrary. We 
an now give amore pre
ise de�nition of the �ve regions mentioned above (see Figure 4).1: The dynami
s take pla
e exponentially 
lose to the slow manifold M�" : � 2 I�s .2: The dynami
s take pla
e in the fast �eld: � 2 I�f .3: The dynami
s take pla
e exponentially 
lose to M+" : � 2 I0s .4: The dynami
s take pla
e in the fast �eld: � 2 I+f .5: The dynami
s take pla
e exponentially 
lose to M�" : � 2 I+s .By de�nition,
�h;j = (u�h;j ; p�h;j ; v�h;j ; q�h;j ; w�h;j ; r�h;j) 2Wu(P�" ) \W s(P�" ) �Wu(M�" ) \W s(M�" );while the jump mid-points are de�ned by
�h;j(���) = (0;�p�; v�;�q�; w�;�r�):Furthermore, sin
e 
�h;j(�) remains exponentially 
lose toM+" for � 2 I0s , 
h;j(�) is also exponen-tially 
lose to Wu(P�" ) \W s(M+" ) and to W s(P�" ) \Wu(M+" ) for suÆ
iently long time. Notethat 
�h;j(�) =2 Wu(M�" ) \W s(M+" ) or W s(M�" ) \Wu(M+" ), sin
e it has to be able to jumpba
k again from M+" to M�" .By 
onsidering possible take o� and tou
h down points of jumps through the fast �eld andby studying, in fa
t expli
itly solving, the slow 
ows onM�" (2.10) and onM+" (2.11), we obtainrelations between the 
oordinates (v�;�q�; w�;�r�) of the jump mid-points and their spatialpositions ��� that uniquely determine the homo
lini
 orbit(s) 
�h;j(�); see Remark 2.1.For " 6= 0, the Hamiltonian H(u; p) (2.6) is not 
onserveddd�H(u(�); p(�)) = uu� + pp� � u3u�= up+ p ��u+ u3 + "(�v + �w + 
)�� u3p= "p(�v + �w + 
) : (2.14)
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Figure 4: A s
hemati
 sket
h of a standing pulse solution 
�h;j(�) in the six-dimensional(u; p; v; q; w; r)�phase spa
e. In region 1, the pulse is exponentially 
lose to M�" for a long`spatial time' and approa
hes P�" as � ! �1. It `takes o�' from M�" at � = ��� � 1p" (byde�nition) and `jumps' through the fast �eld (� 2 I�f ) towards M+" { this is region 2. In region3, 
�h;j(�) tou
hes down nearM+" at � = ��� + 1p" and remains exponentially 
lose toM+" until� = �� � 1p" , from where it jumps ba
k towards M�" , whi
h de�nes region 4 (� 2 I+f ). In the�nal region, 5, 
�h;j(�) is again exponentially 
lose to M�" and approa
hes P�" as � ! 1. Seealso Figure 1 in whi
h 
�h;j(�) exhibits the same stru
ture.
Sin
e (u�h;j(�); p�h;j(�)) must be O(")-
lose to the hetero
lini
 solution (u0;�h (�); p0;�h (�)) (2.7) ofthe FRS (2.5) in the fast �eld I�f , the total 
hange in H for an orbit 
�h;j(�) that jumps fromM�" to M+" is approximated by��f H(v�; q�; w�; r�) = RI�f H�d�= RI�f "p0;�h (� + ��)(�v� + �w� + 
)d� +O("p")= "(�v� + �w� + 
) R1�1 p0;�h (�)d� +O("p")= 2"(�v� + �w� + 
) +O("p");where we have used (2.7), (2.14), and assumed that �� = O( 1" ). Note that ��f H in prin
ipledepends on (v�; q�; w�; r�), the slow (v; q; w; r)-
oordinates of the jump mid-points, and that these
oordinates do not vary to leading order during a jump through the fast �eld,��f v = RI�f v�d� = RI�f "qd� = 2q�p"+O(") = O(p") ;��f q = RI�f q�d� = RI�f "(v � u)d� = 2v�p"+O(") = O(p") ;��f w = RI�f w�d� = RI�f "D rd� = 2r� 1Dp"+O(") = O(p") ;��f r = RI�f r�d� = RI�f "D (w � u)d� = 2w� 1Dp"+O(") = O(p") : (2.15)
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On the other hand, su
h an orbit 
�h;j(�) 
annot have a total 
hange of more than O("2) over ajump through the fast �eld I�f , sin
eH(u; p)jM�" = 12 ���1� 12"(�v + �w + 
) +O("2)�2 +O("2)2�� 14 ���1� 12"(�v + �w + 
) +O("2)�4 + 1�= 12 � 12"(�v + �w + 
)� 14 � 12"(�v + �w + 
)� 14 +O("2) = O("2) ; (2.16)where we re
all (2.8), (2.9). Thus, we 
on
lude that for an orbit 
�h;j(�) that jumps from M�"toM+" the following relation for the slow (v�; q�; w�; r�)-
oordinates of the jump mid-point musthold to leading order �v� + �w� + 
 = 0 : (2.17)Note that ��f H(v�; q�; w�; r�) is in fa
t a Melnikov fun
tion that measures the distan
e betweenWu(M�" ) andW s(M+" ) as they interse
t the fu = 0g hyperplane (see [21, 3, 5℄). Condition (2.17)determines the 3-dimensional set of initial 
onditions in fu = 0g that de�nes the 4-dimensionalinterse
tion of the two 5-dimensional manifolds Wu(M�" ) and W s(M+" ) (re
all that the phasespa
e is 6-dimensional and that the p-
oordinates of these initial 
onditions are ne
essarily O(")
lose to p0;�h (0) = 12p2 (2.7)).By the reversibility symmetry (2.2), we know that (2.17) also must hold for the (v�;�q�; w�;�r�)-
oordinates, whi
h are the 
oordinates of the jump mid-points of the orbits that jump fromM+"to M�" near � = ��.Next, we study the slow 
ows on M�" . The equations (2.10) and (2.11) for these 
ows arelinear and de
oupled, thus we may solve for v and w separately. Based on the above analysis, wewrite down the following boundary 
onditions for the solutions in regions 1, 3, and 5:vh(�1) = �1; vh(��� � 1p" ) = vh(�� � 1p" ) = v� +O(p");qh(�1) = 0; qh(��� � 1p" ) = �qh(�� � 1p" ) = q� +O(p");wh(�1) = �1; wh(��� � 1p" ) = wh(�� � 1p" ) = w� +O(p");rh(�1) = 0; rh(��� � 1p" ) = �rh(�� � 1p" ) = r� +O(p"); (2.18)
see Figures 1 and 4. Note that there are more (boundary) 
onditions than free parameters in thegeneral solutions of (2.10) and (2.11). As a 
onsequen
e, we �nd that both v� and q�, as well asw� and r�, must be related, q� = v� + 1; r� = w� + 1; (2.19)whi
h in geometri
al terms is equivalent to (v�; q�) 2 `u;�v , and (w�; r�) 2 `u;�w (2.12), see alsoFigure 3. Moreover, (2.18) yields additional relations between v� and �� and between w� and ��,v� = �A2 ; w� = �A 2D where A = e�"�� : (2.20)Observe that, sin
e �� > 0, A 2 (0; 1), so that v�; w� 2 (�1; 0). For (v�; q�; w�; r�) and �� thatsatisfy (2.18), (2.19) and (2.20), we obtain the expli
it (slow) solutions,

vh(�) = 8<: 2e"� sinh "�� � 1 in 1,�2e�"�� 
osh "� + 1 in 3,2e�"� sinh "�� � 1 in 5, wh(�) = 8<: 2e "D � sinh "D �� � 1 in 1,�2e� "D �� 
osh "D � + 1 in 3,2e� "D � sinh "D �� � 1 in 5 (2.21)
to leading order in ". Thus, together with the Melnikov 
ondition (2.17), the boundary 
onditions(2.18) imply three relations between v�, w�, and ��. These relations 
ombine into the followingjump 
ondition on A, �A2 + �A 2D = 
 +O(p") : (2.22)11



A solution A 2 (0; 1) of this equation uniquely determines the jump mid-points (v�;�q�; w�;�r�)in phase spa
e of a homo
lini
 solution 
�h;j(�), as well as their spatial positions ��� (2.20).Remark 2.1 We 
omment brie
y on the 
oupling between the V - and W -
omponents and onthe related fa
t that the homo
lini
 orbits are isolated. In the PDE (1.7), the variables V andW seem to be only 
oupled through the equation for U . In the 
onstru
tion of 
�h;j(�), this
oupling indu
es the Melnikov 
ondition (2.17) and gives a natural relationship between the v�-and w�-
oordinates of the jump mid-points. However, we observe that there is an additionalgeometri
ally-indu
ed 
oupling between these two 
omponents that is not dire
tly obvious fromthe equations. In parti
ular, the jump mid-points �� must be the same for both the v- and w-
omponents in (2.1), whi
h implies that also the `time-of-
ight' along the slow manifolds must bethe same for both the v- and w-
omponents, sin
e the parametrizations of all of the 
omponentsof a homo
lini
 orbit 
�h;j(�) are of 
ourse the same. Hen
e, from among the entire one-parameterset of pairs (v�; w�) that satisfy the Melnikov 
ondition (2.17), a unique pair, with v� = �(�w�)D(2.20), is sele
ted by this `time-of-
ight' 
onstraint. Together, the two 
onstraints determine thevalues of v� and w� uniquely and thus establish that the homo
lini
 orbits are isolated.
2.3 Existen
e theoremBased on the analysis of the previous se
tion, we 
an formulate the following existen
e result:Theorem 2.1 Let (�; �; 
;D; �; �; ") be su
h that (2.22) has K solutions Aj 2 (0; 1) (K 2f0; 1; 2g), and let " be small enough. If K = 0, there are no symmetri
 orbits homo
lini
 to P�"in system (2.1). If K > 0, then there are K symmetri
 homo
lini
 orbits 
�h;j(�); j 2 f1;Kg toP�" that have a stru
ture as sket
hed in Figure 4, i.e., the orbits 
�h;j(�) 
onsist of �ve distin
tparts, two fast parts in whi
h it is O(")-
lose to a fast redu
ed hetero
lini
 orbits (u0;�h (� ���); p0;�h (�� ��); v�;�q�; w�;�r�) (2.7) with (v�; q�; w�; r�) given by (2.19) and (2.20), and threeslow parts in whi
h (u�h;j(�); p�h;j(�)) = (�1; 0) + O(") and (v�h;j(�); q�h;j(�); w�h;j(�); r�h;j(�)) aregiven by (2.21), up to O(p")-
orre
tions, with�� = ��;j = �1" logAj = O�1"� : (2.23)The orbits 
�h;j(�) 
orrespond to stationary pulse solutions(U(�; t); V (�; t);W (�; t)) � (uh;j(�); vh;j(�); wh;j(�))of (1.7).Moreover, if j�Dj > j�j and sgn(�) 6= sgn(�), then a saddle-node bifur
ation of homo
lini
orbits o

urs, to leading order in ", as 
 
rosses through

1(�; �;D) = (��)� 1D�1� DD�1 �D� 1D�1 �D� DD�1� > 0 for � < 0 < �,

2(�; �;D) = �� 1D�1 (��) DD�1 �D� DD�1 �D� 1D�1� < 0 for � < 0 < �: (2.24)
The expli
it expressions for the values 

1;2 of the saddle-node bifur
ations are based on a straight-forward leading order analysis: set the partial derivative of (2.22) with respe
t to A equal to zeroto obtain A
 = A1(�; �;D) = ���D� �� 12 DD�1 2 (0; 1) ; (2.25)
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Figure 5: A graphi
al representation of the jump 
ondition (2.22) and the asso
iated saddle-nodebifur
ations as des
ribed by Theorem 2.1 for � < 0 < � (with � + � > 0) and for � < 0 < �(also with �+ � > 0). Note that AK 2 (0; 1) for all parameter 
ombinations.
and then insert this expression ba
k into formula (2.22) to obtain 

1;2 (2.24).In Figure 5, the relations between Aj and 
 as solutions of (2.22) have been plotted. Thetwo saddle-node 
ases at A
 des
ribed by the theorem are also 
learly visible. Two other bi-fur
ations o

ur: one at 
 = A = 0, whi
h 
orresponds to �� = 1 (2.23), i.e., the plateau atwhi
h the U -
omponent of the one-pulse solution is near 1 be
omes in�nitely long; the other at
 = �+ �, A = 1, where the pulse be
omes in�nitely thin { see also Lemma 2.2 below.
2.4 The proof of Theorem 2.1The existen
e of the homo
lini
 orbit 
�h;j(�) �Wu(P�" )\W s(P�" ) will be established by study-ing Wu(M�" ) and Wu(P�" ) as they pass along M+" . The reversibility symmetry (2.2) plays a
ru
ial role in the proof.The manifold Wu(P�" ) is 3-dimensional, so that all orbits 
�P (�) � Wu(P�" ) 
an be representedby a two-parameter family, 
�P (�) = 
�P (�; v�; w�), where (v�; w�) represents the jump mid-point.Of 
ourse, we only 
onsider the part of Wu(P�" ) that is spanned by orbits 
�P (�) that are O(")
lose to a hetero
lini
 solution of the FRS (2.5) away from M�" and M+" , i.e., we do not payattention to the other `half' of Wu(P�" ) that is spanned by solutions with a monotoni
ally de-
reasing u-
oordinate { see Figure 2. More pre
isely, 
�P (�) is exponentially 
lose to M�" forasymptoti
ally large, negative values of �, jumps away as � in
reases, and 
rosses through thefu = 0g hyperplane at
�P (��P;�) = 
�P (��P;�(v�; w�)) = (0; p�; v�; q�; w�; r�): (2.26)Note that 
�P (�; v�; w�) must be exponentially 
lose to the slow unstable manifold Wuslow(P�" ) �M�" that is spanned by `u;�v and `u;�w (2.12), so that q� = v�+1, r� = w�+1 as in (2.19). More-over, we note that this family of orbits 
�P (�; v�; w�) with �nite pairs (v�; w�) has as its naturalgeometri
 
ompletion the slow unstable manifold Wuslow(P�" ) � M" in the limit that jv�j ! 1and jw�j ! 1 su
h that their ratio remains �xed.Within Wu(P�" ), there is a priori a one-parameter family of orbits that is forward asymptoti
 toM+" , be
ause Wu(P�" ) \W s(M+" ) is the interse
tion of a 3- and a 5-dimensional manifold in a6-dimensional spa
e, i.e., Wu(P�" )\W s(M+" ) is expe
ted to be two-dimensional. The Melnikov
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al
ulus [21, 3, 5℄ of the previous se
tion implies that 
�P (�; v�; w�) � Wu(P�" ) \W s(M+" ) if v�and w� are related by (2.17). By 
onstru
tion, Wu(P�" ) \W s(M+" ) is spanned by 
�het(�; v�) =
�P (�; v�; w�(v�)) with w�(v�) given by (2.17).The evolution of 
�het(�; v�) near M+" is governed by the linear SRS (2.11). If v�; w� 2 (�1; 0),then 
�het(�) interse
ts the fq = 0g-hyperplane (Figure 3). We may assume that the inter-se
tion 
�het(�; v�) \ fq = 0g takes pla
e at � = 0. This assumption determines the jumpmid-point �het;�(v�) = �P;�(v�; w�(v�)). Moreover, it follows that �het;�(v�) > 0 (2.26). For� > ��het;�(v�) +O(1=p"), i.e., if 
�het(�; v�) is exponentially 
lose to M+" , the evolution of ther-
oordinate r�het(�; v�) of 
�het(�; v�) 
an be 
omputed expli
itly. For general v�, r�het(0; v�) 6= 0,but there are spe
ial values of v� su
h that r�het(0; v�) = 0. In fa
t, r�het(0; v�) = 0 if andonly if v� = �A20;�, where A0;� solves an algebrai
 equation that is to leading order given by(2.22). Note that this is in essen
e how (2.22) has been obtained. However, also note thatthe relation (2.22) has been dedu
ed for the so far only formally 
onstru
ted homo
lini
 orbit
�h;j(�) � Wu(P�" ) \ W s(P�" ), while A0;� 
orresponds to the hetero
lini
 orbit 
�het(�; v�) �Wu(P�" )\W s(M+" ). This is explained by the fa
t that �j;�, the position of the jump mid-pointof 
�h;j(�), is of O(1=") (2.23). Thus 
�h;j(�) must be exponentially 
lose toM+" for an asymptot-i
ally long `time'. Hen
e, it must be exponentially 
lose to W s(M+" ). We de�ne the (rigorously
onstru
ted) 
riti
al hetero
lini
 orbit 
�0;�(�) by 
�0;�(�) = 
�het(�; v�) with v� determined by A0;�.Moreover, we observe that 
�0;�(�) is su
h that k
�h;j(�)�
�0;�(�)k is exponentially small for � < 0;and jAj � A0;�j is also exponentially small, but nonzero. Note that 
�0;�(�) 
annot be symmet-ri
, sin
e it remains exponentially 
lose toM+" for � > 0; this ne
essarily implies that p�0;�(0) 6= 0.Now assume that K 6= 0, i.e., that there exits at least one solution A = Aj 2 (0; 1) of (2.22), andthat (�; �; 
;D) are su
h that Wu(M�" ) and W s(M+" ) interse
t transversely, i.e., that 
 is notasymptoti
ally 
lose to 

1;
2(�; �;D), the values at whi
h the saddle-node bifur
ations o

ur(2.24). The above arguments imply that the hetero
lini
 orbit 
�0;�(�) � Wu(P�" ) \W s(M+" )with A0;� = Aj to leading order, exists and, by 
onstru
tion, that 
�0;�(0) 2 fq = r = 0g.By de�nition, the orbit 
�0;�(�) for � 2 (a; b) spans a 
urve ��0;�(a; b) � R 6 , and there is a 3-dimensional tube T �0;� � Wu(P�" ) around ��0;�(a; b) (for any �1 < a < b � 1) whi
h 
onsistsof all orbits 
�(�; v�; w�) �Wu(P�" ) with (v�;w�) so 
lose to (�A20;�; w�(�A20;�)) thatsup��� 12 �0;� k
�(�; v�; w�)� 
�0;�(�)k < e� 1p" ;
where ��0;� = ��het;�(v�), the position of the jump mid-point of 
�0;�(�). The existen
e of T �0;�follows from the 
ontinuous dependen
e on the initial 
onditions of solutions of smooth ODEs(as (2.1) 
learly is); T �0;� de�nes an open neighborhood of ��0;�(a; b) for any �1 < a < b � 1in the relative topology of Wu(P�" ). Note that T �0;� 
ontains both orbits that jump away fromM+" O(p") 
lose to 
�0;�(� 12�0;�) { these are the orbits 
lose to �T �0;� that only remain 
lose toM+" up to � = � 12�0;�+O(1=p") { and orbits that are exponentially 
lose toM+" for arbitrarilylong `time' { the orbits that are 
lose enough to 
�0;�(�). Note also that the `se
ondary' jumpmid-points, i.e., the points at whi
h the orbits 
�(�; v�; w�) take o� again fromM+" , of all orbitsin T �0;� must be exponentially 
lose to the 
urve ��0;�(� 12�0;�;1), that is itself exponentially 
losetoM+" and is approximated, or represented, by a part of a solution 
urve of (2.11) { 
ompare toregion 3 in Figure 4 in whi
h the 
urve ��0;�(���; ��) is approximated.The tube T �0;� is stret
hed by the fast dynami
s nearM+" into a 3-dimensional manifold that is nolonger exponentially small in the dire
tion of the fast unstable eigenvalue of M+" { see Remark2.2. In fa
t, T �0;� is exponentially 
lose and parallel to Wu(M+" ). Sin
e Wu(M+" ) interse
tsW s(M�" ) transversely { whi
h 
an be shown by the same Melnikov-type arguments that estab-14



lished the interse
tion of Wu(M�" ) and W s(M+" ) { it follows that T �0;� \W s(M�" ) exists as atwo-dimensional submanifold of T �0;�. We label this manifold as S�0;�; it 
onsists of a one-parameterfamily of orbits 
�(�; v�; w�) �Wu(P�" )\W s(M�" ), i.e., orbits in Wu(P�" ) that are homo
lini
toM�" . Sin
e T �0;� is exponentially 
lose to 
�0;�(�) for � � � 12�0;�, and sin
e 
�0;�(�) takes o� fromM�" at Wuslow(P�" ), it follows by the reversibility symmetry (2.2) that the orbits in S�0;� tou
hdown onM�" 
lose toW sslow(P�" ), the slow stable manifold of P�" inM�" that is spanned by `s;�v;w.The existen
e of the homo
lini
 orbit 
�h;j(�) is established if it 
an be shown that there isan orbit 
�(�; v�; w�) � S�0;� that indeed tou
hes down exa
tly on W sslow(P�" ). This result willfollow from another appli
ation of the reversibility symmetry. The above 
onstru
tion of thetwo-dimensional manifold S�0;� � Wu(P�" ) \ W s(M�" ), that is based on the hetero
lini
 or-bit 
�0;�(�) � Wu(P�" ) \W s(M+" ) and on the tube T �0;�, has a symmetri
 
ounterpart in thetwo-dimensional manifold S+0;� � W s(P�" ) \Wu(M�" ), that is based on the hetero
lini
 orbit
+0;�(�) �W s(P�" )\Wu(M+" ) and on the tube T +0;�. Note that by 
onstru
tion all orbits in S+0;�tou
h down (or: take o� in ba
kward `time') on W sslow(P�" ) �M�" . Thus, 
�h;j(�) exists if it 
anbe shown that S�0;� and S+0;� interse
t.To show this, we �rst note thatS�0;� \ S+0;� = T �0;� \ T +0;� �Wu(P�" ) \W s(P�" );sin
e orbits in T �0;� that are also in T +0;� � W s(P�" ) � W s(M�" ) must, by de�nition, lie insideS�0;�. Moreover, dim �S�0;� \ S+0;�� = dim �T �0;� \ T +0;�� = 1:Sin
e both S�0;� 
onsist of solutions of (2.1), the dimension of S�0;� \ S+0;� 
annot be zero, i.e.,S�0;�\S+0;� 
annot be a point. It also 
annot be two, whi
h would imply that the two-dimensionalsets S�0;� 
oin
ide. This is not the 
ase, sin
e S�0;� are, as subsets of T �0;�, stret
hed like T �0;�, thusS�0;� is parallel to Wu(M+" ) and S+0;� to W s(M+" ). Hen
e, we may 
on
lude that we have provedthe existen
e of the (lo
ally) uniquely determined homo
lini
 orbit 
h;j(�) �Wu(P�" )\W s(P�" ),if we have shown that T �0;� and T +0;� interse
t.This follows from the lo
al stret
hing of the tubes T �0;� and T +0;� near M+" . To see this, we
onsider the 
urves ��0;�(� 12�0;�; 12�0;�) and �+0;�(� 12�0;�; 12�0;�) that are asso
iated to 
�0;�(�) and
+0;�(�) (note that 
+0;�(�) jumps at +�0;� by (2.2)). By 
onstru
tion, ��0;�(� 12�0;�; 12�0;�) and�+0;�(� 12�0;�; 12�0;�) are exponentially 
lose to ea
h other and exponentially 
lose toM+" . The tubeT �0;� is stret
hed in the dire
tion of the fast unstable eigenvalue of M+" near ��0;�(� 12�0;�; 12�0;�)and is exponentially 
lose to Wu(M+" ), while T +0;� is stret
hed in the dire
tion of the fast stableeigenvalue of M+" near ��0;�(� 12�0;�; 12�0;�) and is exponentially 
lose to Wu(M+" ). Moreover,both 3-dimensional manifolds T �0;� extend to two sides { fu < 1g and fu > 1g { of M+" near��0;�(� 12�0;�; 12�0;�), sin
e they both 
ontain orbits that are asymptoti
 to M+" . Thus, T �0;� andT +0;� must have a nontrivial interse
tion. This 
ompletes the proof for K > 0.Observe that the left hand side of (2.22) has at most one extremum for A 2 (0; 1), namely
A = ���D� �� 12 DD�1 ;see (2.25). Therefore, K 
annot be more than two.Finally, we brie
y 
onsider the situation in whi
h K = 0, i.e. in whi
h there is no solution15



A 2 (0; 1) of (2.22). In this 
ase, the 
riti
al hetero
lini
 orbits 
�0;�(�) 
annot be 
onstru
ted,and it follows immediately that Wu(P�" ) \W s(P�" ) = ;. The saddle-node bifur
ations o

urat the transition from K = 2 to K = 0 and must be lo
ally unique by the C1-smoothness withrespe
t to " of the stable and unstable manifolds of M�" and P�" [8, 9℄. 2Remark 2.2 In [13, 14℄, the stret
hing and squeezing asso
iated to the passage of an invariantmanifold along a slow manifold are des
ribed by the Ex
hange Lemma. This lemma 
an be usedto study the deformation of Wu(P�" ) as it passes along M+" . Indeed, one may verify expli
itlythat the sets of tou
h down points of the tra
ked manifold on the slow manifolds are transverseto the 
ows on those manifolds. However, we have 
hosen for a somewhat more dire
t approa
hhere.
2.5 Expli
it analysis of the number K of stationary one-pulse solutionsTheorem 2.1 above establishes that K � 2. In this se
tion, we 
arry out a straightforwardanalysis of the jump 
ondition (2.22) to derive expli
it results for the number (K) of stationaryone-pulse solutions in (1.6) for a given set of parameters. The following lemma is an example; itis stated without proof.Lemma 2.2 Let (�; �; 
;D; �; �; ") be su
h that j�Dj > j�j. Then, for " > 0 small enough, and

1;
2 as given in (2.24), we have(a1) if sgn(�) = sgn(�), sgn(
) = sgn(�), and j
j < j�+ �j, then K = 1.(a2) if sgn(�) = sgn(�), sgn(
) = sgn(�), and j
j > j�+ �j, then K = 0.(a3) if sgn(�) = sgn(�) and sgn(
) 6= sgn(�), then K = 0.(b1) if sgn(�) = �1 = �sgn(�), �+ � > 0, and sgn(
) = �1, then K = 0.(b2) if sgn(�) = �1 = �sgn(�), �+ � > 0, and 0 < 
 < �+ �, then K = 1.(b3) if sgn(�) = �1 = �sgn(�), �+ � > 0, and �+ � < 
 < 

1, then K = 2.(b4) if sgn(�) = �1 = �sgn(�), �+ � > 0, and 
 > 

1, then K = 0.(
1) if sgn(�) = �1 = �sgn(�), �+ � < 0, and 
 < �+ �, then K = 0.(
2) if sgn(�) = �1 = �sgn(�), �+ � < 0, and �+ � < 
 < 0, then K = 1.(
3) if sgn(�) = �1 = �sgn(�), �+ � < 0, and 0 < 
 < 

1, then K = 2.(
4) if sgn(�) = �1 = �sgn(�), �+ � < 0, and 
 > 

1, then K = 0.(d1) if sgn(�) = 1 = �sgn(�), �+ � > 0, and 
 < 

2, then K = 0.(d2) if sgn(�) = 1 = �sgn(�), �+ � > 0, and 

2 < 
 < 0, then K = 2.(d3) if sgn(�) = 1 = �sgn(�), �+ � > 0, and 0 < 
 < �+ �, then K = 1.(d4) if sgn(�) = 1 = �sgn(�), �+ � > 0, and 
 > �+ �, then K = 0.(e1) if sgn(�) = 1 = �sgn(�), �+ � < 0, and 
 < 

2, then K = 0.(e2) if sgn(�) = 1 = �sgn(�), �+ � < 0, and 

2 < 
 < �+ �, then K = 2.(e3) if sgn(�) = 1 = �sgn(�), �+ � < 0, and �+ � < 
 < 0, then K = 1.(e4) if sgn(�) = 1 = �sgn(�), �+ � < 0, and 
 > 0, then K = 0.See also Figure 5, where we plotted (2.22) for 
ertain parameter 
ombinations. The left framerepresents the 
ases (b1) { (b4), the right frame (d1) { (d4).
3 Travelling pulse solutions
In this se
tion, we establish the existen
e of lo
alized one-pulse solutions to (1.6) that travel witha �xed, well-determined, speed. As in the previous se
tion, we will 
onstru
t these pulses as16



homo
lini
 orbits 
�tr;j(�) to the 
riti
al point P�" .
3.1 The formal 
onstru
tion of travelling one-pulse solutions, 
�tr;j(�)We introdu
e the moving 
oordinates � = x � "2
t and, with a slight abuse of notation, set� = �=", so that (1.6) redu
es to the 6-dimensional dynami
al system,8>>>>>><>>>>>>:

u� = pp� = �u+ u3 + "(�v + �w + 
 � 
p)v� = "qq� = "(v � u)� "3
�qw� = "D rr� = "D (w � u)� "3D2 
�r
(3.1)

with an additional parameter 
 for the speed of the travelling pulse. The stru
ture of this equa-tion justi�es our 
hoi
e for the magnitude of 
 (= O("2)). With this s
aling, the perturbation ofthe fast (u; p)-subsystem indu
ed by 
 is of the same order as the perturbations indu
ed by theV;W -
omponents in the U -equation of (1.6). Note that, unlike (2.1), (3.1) depends expli
itly onthe parameters � and �. However, the 
riti
al points of (3.1) are identi
al to those of (2.1) and,thus, given by (2.4).The fast redu
ed system is identi
al to (2.5), as long as �; � � 1"3 , and is thus again governedby the Hamiltonian H(u; p) (2.6). For any 
 of O(1), system (3.1) possesses two invariant slowmanifolds and their asso
iated stable and unstable manifolds, whi
h we denote, with a slightabuse of notation, by M�" and W s;u(M�" ). Although M�" depend on 
, the leading and �rstorder approximations of M�" are still given by (2.8) and (2.9), so that it again follows thatH(u; p)jM�" = O("2) (2.16).However, there are two signi�
ant di�eren
es between (3.1) and (2.1). First, (3.1) does nothave the reversibility symmetry of (2.1) for 
 6= 0. As a 
onsequen
e, we 
annot expe
t to �ndsymmetri
 pulses and, more importantly, we 
annot exploit the symmetry in the 
onstru
tion ofthe pulse and in the asso
iated validity proof. However, system (3.1) does inherit the symmetry,� ! ��; p! �p; q ! �q; r ! �r and 
! �
 ; (3.2)whi
h implies that the travelling pulses do not have a preferred dire
tion, i.e., to any pulsetravelling with speed 
 > 0, there is a symmetri
al 
ounterpart that travels with speed 
 < 0.Se
ond, dd�H(u(�); p(�)) = "p(�v + �w + 
 � 
p) ; (3.3)instead of (2.14), whi
h implies that the Melnikov 
onditions will depend in an O(1) fashion on
 { whi
h also further validates our s
aling of the magnitude of the speed of the pulses.As in se
tion 2.2, we de�ne the position of the jump mid-points of 
�tr;j(�) to be ���, i.e.,
�tr;j(�) 
rosses the hyperplane fu = 0g at � = ��� (�� > 0). The 
oordinates of the jumpmid-points are de�ned by 
�tr;j(���) = (0; p�� ; v�� ; q�� ; w�� ; r�� ): (3.4)Unlike the symmetri
 stationary 
ase, the 
oordinates of the jump through the fast �eld fromM�" to M+" , denoted by (p�� ; v�� ; q�� ; w�� ; r�� ), will di�er from those of the jump ba
k from M+"toM�" , denoted by (p+� ; v+� ; q+� ; w+� ; r+� ). Moreover, the middle of the pulse, 
�tr;j(0), has be
ome17



slightly arti�
ial by this de�nition, in the sense that � = 0 does not in general 
orrespond to anextremum of any of the U -, V - or W -
omponents in (1.6). Nevertheless, with this de�nition we
an use the same partition of the homo
lini
 orbit 
�tr;j(�) into �ve regions { see Se
tion 2.2 {with I�f;s and I0s as in (2.13).We again use the Melnikov fun
tion to measure the distan
e between Wu(M�" ) and W s(M+" ).We �nd, assuming that �� = O( 1" ),��f H(v�� ; q�� ; w�� ; r�� ) = RI�f H�d�= RI�f "p0;�h (� + ��)��v�� + �w�� + 
 � 
p0;�h (� + ��)� d� +O("p")= 2" ��v�� + �w�� + 
 � 13p2
�+O("p");where we have impli
itly used that the slow 
oordinates (v; p; w; r) do not vary to leading orderduring a jump through the fast �eld, i.e., that��f v; ��f p; ��f w; ��f q = O(p") (3.5)(see 2.15)). Sin
e H(u; p)jM�" = O("2), we �nd as �rst Melnikov 
ondition,�v�� + �w�� + 
 = 13p2
: (3.6)Sin
e there is no reversibility symmetry, the se
ond Melnikov 
ondition for the jump from M+"to M�" is slightly di�erent, �v+� + �w+� + 
 = �13p2
 ; (3.7)whi
h follows from�+f H(v+� ; q+� ; w+� ; r+� ) = RI+f H�d�= RI+f "p0;+h (� + ��)��v+� + �w+� + 
 � 
p0;+h (� + ��)� d� +O("p")= 2" ��v+� + �w+� + 
 + 13p2
�+O("p")(
ompare p0;+h (�) to p0;�h (�) { (2.7)). Note that the jump 
onditions are 
onsistent with thesymmetry (3.2).We 
an pro
eed (formally) as in the stationary 
ase. We solve the (linear) slow subsystemsexpli
itly, imposing boundary 
onditions like those in (2.18) at the boundaries of the three slowregions (1, 3, and 5) and also imposing the Melnikov 
onditions (3.6) and (3.7). Here, we presentthis analysis for the 
riti
al 
ase �; � = O( 1"2 ), sin
e travelling pulses 
an only exist for these val-ues of � and �. More pre
isely, if both �; � � 1"2 , then the 
ows onM�" are symmetri
 to leadingorder and the only asymmetries in the 
onstru
tion of 
�tr;j(�) are introdu
ed by the 
's in theMelnikov 
onditions (3.6) and (3.7). From this, it follows that 
 = 0, i.e., that 
�tr;j(�) = 
�h;j(�),the stationary pulse { see Remark 3.1.Thus, we introdu
e �̂ and �̂ by �̂ = "2� � 1" ; �̂ = "2� � 1" :The 
ows on M�" and M+" are, up to 
orre
tion terms of O("3), given by� v�� = �"
�̂v� + "2(v + 1) ;w�� = �"
 �̂D2w� + "2D2 (w + 1) ; and � v�� = �"
�̂v� + "2(v � 1) ;w�� = �"
 �̂D2w� + "2D2 (w � 1) ;18
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 positive.
see Figure 6. The eigenvalues ��v;w of the de
oupled (v; q)- and (w; r)-subsystems are given by��v = 12 ��
�̂ �p
2�̂2 + 4� ; ��w = 12 1D �� 
�̂D �q 
2�̂2D2 + 4� ; (3.8)whi
h 
learly establishes the asymmetri
 
hara
ter of the 
ows onM�" (for �̂ ; �̂ 6= 0). The stableand unstable manifolds of P�" restri
ted to M�" are spanned by`u;�v = fq = �+v (�1 + v)g ; `u;�w = fr = D�+w(�1 + w)g ;`s;�v = fq = ��v (�1 + v)g ; `s;�w = fr = D��w(�1 + w)g ; (3.9)(
ompare with (2.12)).Sin
e the slow (v; q; w; r)-
oordinates do not vary to leading order during a jump through thefast �eld (3.5), we 
an `mat
h' the solutions in the slow regions 1, 3, and 5 by imposing boundary
onditions as in (2.18). As in the stationary 
ase, there are more boundary 
onditions than freeparameters. Hen
e, there are relations between the 
oordinates of the jump mid-points,(v�� ; q�� ) 2 `u;�v ; (w�� ; r�� ) 2 `u;�w ; (v+� ; q+� ) 2 `s;�v ; (w+� ; r+� ) 2 `s;�w ; (3.10)as may be seen from the system geometry (see Figure 7). Furthermore,v�� = s�v �e�2"��v �� � 1�� 1 ; w�� = s�w �e�2"��w�� � 1�� 1 ; (3.11)with s�v = � 2��v��v � ��v < 0; s�w = � 2��w��w � ��w < 0: (3.12)(Note that (3.10) and (3.11) redu
e to their stationary equivalents (2.19) and (2.20) if either
 = 0 or �̂ = �̂ = 0 { see Remark 3.1.) We 
on
lude that for any given pair (
; ��), the(slow) 
oordinates (v�� ; q�� ; w�� ; r�� ) of the jump mid-points are uniquely determined by the above
onditions 
ombined with the mat
hing 
onditions (3.5). Moreover, we have the following leadingorder approximations of the v- and w-
omponents of 
�tr;j(�) in the slow regions (1, 3, 5),
vtr = 8><>: �2s�v e"�+v � sinh "�+v �� � 1 in 1,s�v e"�+v (����) + s+v e"��v (�+��) + 1 in 3,2s+v e"��v � sinh "��v �� � 1 in 5, wtr = 8><>: �2s�we"�+w� sinh "�+w�� � 1 in 1,s�we"�+w(����) + s+we"��w(�+��) + 1 in 3,2s+we"��w� sinh "��w�� � 1 in 5,19
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Figure 7: A s
hemati
 sket
h of a travelling pulse 
�tr;j(�) homo
lini
 to P�" .
see Figure 7. The Melnikov 
onditions (3.6) and (3.7) impose two relations between 
 and ��,8<: 13p2
 = ��s�v �e�2"�+v �� � 1�� 1� + � �s�w �e�2"�+w�� � 1�� 1� + 
� 13p2
 = ��s+v �e2"��v �� � 1�� 1� + � �s+w �e2"��w�� � 1�� 1� + 
 : (3.13)
A pair of solutions (
; ��) to (3.13) with 
 6= 0 
orresponds formally to a homo
lini
 solution
�tr;j(�) of (3.1) and thus to a pulse solution of (1.6) that travels with speed "2
.
Remark 3.1 If �; � � 1"2 , i.e., if �̂ ; �̂ = 0 to leading order, then ��v = �1, ��w = � 1D , ands�v = s�w = �1, so that (3.13) redu
es to�13p2
 = �A2 + �A 2D � 
 = 13p2
;to leading order, with A as in (2.20). Hen
e, 
 = 0 and 
�tr;j(�) = 
�h;j(�) (2.22).
3.2 Existen
e theorem for travelling pulse solutions
Theorem 3.1 Let (�; �; 
;D; �; �; ") be su
h that � = �̂"2 , � = �̂"2 , and assume that (3.13) hasK solution pairs (
j ; (��)j) with 
j 6= 0. Let " > 0 be small enough. If K = 0, then thereare no homo
lini
 orbits to P�" in (3.1) with 
 6= 0. If K > 0, there are K homo
lini
 orbits
�tr;j(�), j 2 f1; : : : ;Kg, to P�" in (3.1) that have a stru
ture as sket
hed in Figure 7 and that
orrespond to travelling one-pulse solutions of (1.6) whi
h travel with speed "2
�j 6= 0, where
�j = 
�j (") = 
j +O(").The proof of Theorem 3.1 is similar to that of Theorem 2.1 in Se
tion 2.4. Nevertheless, thereare di�eren
es, espe
ially sin
e the proof of Theorem 2.1 strongly depended on the reversibilitysymmetry in (2.1). The proof is given in Se
tion 3.3.Generi
ally, K 
an be expe
ted to be positive for open regions in the (�; �; 
;D; �̂ ; �̂)-parameter20



spa
e. However, a priori, it is not 
lear whether parameter 
ombinations exist for whi
h K 
anbe non-zero. In fa
t, though (3.13) is a relatively simple expression, it 
an { of 
ourse { not besolved expli
itly. Nevertheless, it 
an be evaluated, and the (open) region in parameter spa
ein whi
h K 6= 0 
an be determined with a simple and reliable numeri
al pro
edure. Moreover,(3.13) 
an be approximated asymptoti
ally in various limit settings. As an example, we 
onsiderthe 
ase �̂ = 1Æ � 1; �̂ = hÆ � 1;i.e., we assume that �̂ is large and �̂ is small, but both still O(1) with respe
t to ". We thusintrodu
e an arti�
ial se
ond asymptoti
 parameter Æ that is independent of " su
h that 0 < "�Æ � 1. We further assume that all other parameters, in
luding h, are O(1) with respe
t to Æ.We sear
h for solutions (
; ��) of (3.13) su
h that
 > 0; 
 = O(1); X� = "Æ�� = O(1);with respe
t to Æ. Note that this implies that we look for homo
lini
 orbits that spend a long`time' (O( 1"Æ )) near M+" . It follows by a straightforward 
omputation from (3.11) that,v�� = �2e2X�
 (1+O(Æ)) + 1 +O(Æ); v+� = �1 +O(Æ); w�� = O(Æ); w+� = O(Æ); (3.14)so that (3.13) redu
es to13p2
 = �v�� + 
 +O(Æ); �13p2
 = ��+ 
 +O(Æ):Hen
e, there exists a homo
lini
 orbit 
�tr;1(�) to P�" in (3.1) for � > 
 with
 = 
1 = 32p2(�� 
) +O(Æ; "); (3.15)Moreover, X�;1, and thus (��)1, 
an be determined through v�� and (3.14). By the symmetry(3.2), we 
on
lude that K = 2 for �̂ � 1, �̂ � 1 and � > 
.
3.3 Proof of Theorem 3.1The 
onstru
tion of 
�tr;j(�) �Wu(P�" ) \W s(P�" ) �Wu(P�" ) \W s(M�" )is again based on a spe
ial hetero
lini
 orbit 
��;�(�) � Wu(P�" ) \ W s(M+" ), a tube T ��;� �Wu(P�" ) around it, their 
ounterparts in ba
kwards `time' 
+�;�(�) � W s(P�" ) \Wu(M+" ) andT +�;� �WS(P�" ), so that 
�tr;j(�) � T ��;� \ T +�;�.For any 
 > 0 (�xed),Wu(P�" ) is represented by the two-parameter family of orbits 
�P (�; v�� ; w�� ) �Wu(P�" ). We know by the Melnikov analysis that there is a one-parameter subfamily of orbits
�het(�; v�� ) = 
�P (�; v�� ;w�� (v�� )) � Wu(P�" ) \ W s(M+" ), with w�� (v�� ) determined by (3.6).The orbits 
�het(�; v�� ) follow the slow 
ow on M+" , and it 
an be 
he
ked that those withv�� 2 (�1; S�v ) again 
ross the fq = 0g-hyperplane. Here, S�v is determined by the obser-vation that (v�� ; q�� ) 2 lu;�v in the (v; q)-subsystem on M�" (3.10), while (v�� ; q�� ) must be tothe left of ls;+v in the (v; q)-subsystem on M+" so that 
�het(�; v�� ) may 
ross through fq = 0g;a similar 
ondition must hold for (w�� (v�� ); r�� ) in the (w; r)-sub
ows on M�" { see Figure 7.For ea
h v�� 2 (�1; S�v ) the interse
tion of 
�het(�; v�� ) with fq = 0g o

urs by de�nition at� = ��het(v�� ) 2 (���; ��), and these interse
tions de�ne a one-dimensional 
urve denoted byZ� = f(u�(v�� ); p�(v�� ); v�(v�� ); 0; w�(v�� ); r�(v�� )) = 
�het(��het; v�� )) : v�� 2 (�1; S�v )g; (3.16)21



see Figure 8, where one point on Z� is illustrated, sin
e v�� is �xed in the �gure. The 
urve Z�is by 
onstru
tion exponentially 
lose to M+" , and its proje
tion on M+" is given byZ�slow = f(1 + "u+1 (v�; 0; w�; r�); p+1 (v�; 0; w�; r�); v�; 0; w�; r�) : v�� 2 (�1; S�v )g;see (2.8).We perform the same 
onstru
tion in ba
kwards (spatial) time and de�ne the one-parameterfamily of orbits 
+het(�; v+� ) 2 W s(P�" ) \Wu(M+" ) by (3.7), the one-dimensional 
urve Z+ =f(u+(v+� ); p+(v+� ); v+(v+� ); 0; w+(v+� ); r+(v+� ))g � fq = 0g, and its proje
tion Z+slow on M+" .The (w; r)-
omponents of Z�slow de�ne two 
urves, that typi
ally interse
t, i.e., the 
ondition(w�(v�� ); r�(v�� )) = (w+(v+� ); r+(v+� )) determines for ea
h given 
 a dis
rete number of 
riti
alvalues (v��;�(
); v+�;�(
)). However, for general 
, the one-dimensional 
urves Z�slow and Z+slow donot interse
t within the 3-dimensional manifold M+" , i.e., v�(v��;�(
)) 6= v+(v+�;�(
)) in general.Nevertheless, the 
ombined 
ondition,(v�(v�� (
)); w�(v�� (
)); r�(v�� (
))) = (v+(v+� (
)); w+(v+� (
)); r+(v+� (
))); (3.17)in prin
iple determines dis
rete 
riti
al values 
j of 
 for whi
h Z�slow and Z+slow interse
t (trans-versely) in M+" . It is a matter of straightforward 
al
ulations to show that (3.17) is equivalentto (3.13).The present 
onstru
tion is 
omputationally more 
umbersome than that of se
tion 3.1, but its
hara
ter is more geometri
al and it 
an thus be more easily extended into a validity proof. Todo so, we de�ne (for any 
) the spe
ial hetero
lini
 orbits 
��;�(�; 
) = 
�het(�; v��;�) � Wu(P�" ) \W s(M+" ) and 
+�;�(�; 
) = 
+het(�; v+�;�) � W s(P�" ) \ Wu(M+" ). The tube T ��;�(
) � Wu(P�" )is spanned by those orbits 
�P (�; v�� ; w�� ) � Wu(P�" ) that are exponentially 
lose to 
��;�(�; 
)for � < 12 (��� + ��het(v��;�)). Likewise, the tube T +�;�(
) � W s(P�" ) is spanned by those orbits
+P (�; v�� ; w�� ) � W s(P�" ) that are exponentially 
lose to 
+�;�(�; 
) for � > 12 (�� + �+het(v+�;�)). Inforwards `time', T ��;�(
) is stret
hed along Wu(M+" ), while T +�;�(
) is stret
hed along W s(M+" ) inba
kwards `time'. By 
onstru
tion, the (stret
hed) tubes interse
t the 5-dimensional hyperplanefq = 0g in two-dimensional manifolds, Z�T (
) (by de�nition).The theorem is proved if it 
an be established that there are non-zero values of 
 for whi
h Z�T (
)\Z+T (
) 6= ;, sin
e ea
h point in this interse
tion determines a point inWu(P�" )\W s(P�" )\fq = 0g.To show this, we extend fq = 0g to a 6-dimensional spa
e, denoted by ffq = 0g; 
g, by adding 
 asan independent variable. This spa
e 
ontains the extended manifolds fZ�T (
); 
g and fZ+T (
); 
gas 3-dimensional subsets. Sin
e 
��;�(�; 
) and 
+�;�(�; 
) are exponentially 
lose to M+" as theyinterse
t fq = 0g, and sin
e the proje
tions Z�slow and Z+slow interse
t by 
onstru
tion near 
 = 
jdetermined by (3.13), it follows that fZ�T (
); 
g and fZ+T (
); 
g are exponentially 
lose for 
 near
j . As in the proof of Theorem 2.1, it now follows from the fa
t that T ��;�(
) is stret
hed alongWu(M+" ) and T +�;�(
) along W s(M+" ), that { in the 6-dimensional spa
e ffq = 0g; 
g { the 3-dimensional manifolds fZ�T (
); 
g and fZ+T (
); 
g must interse
t transversely in dis
rete pointsthat have 
-
oordinates 
�j ("), whi
h are to leading order determined by (3.13) or (3.17). Hen
e,Z�T (
) \ Z+T (
) = 
�tr;j(�) \ fq = 0g 6= ; at 
�j (") = 
j +O("). 2
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Figure 8: Example of the 
onstru
tion of v�(v�� ), w�(v�� ), and r�(v�� ).
4 Bifur
ation from stationary to travelling pulse solutions
4.1 Leading order analysisTo investigate the nature of the bifur
ation from stationary one-pulse solutions to travellingone-pulse solutions, we start by 
onsidering the travelling pulse just after `
reation', that is, weset 
 = Æ ; (4.1)with 0 < " � Æ � 1 (so 
 is no longer an unknown anymore). We expand the three unknowns,�̂ = �̂�;0+O(Æ) ; �̂ = �̂�;0+O(Æ) ; �� = ��;0+Æ��;1+O(Æ2). Noti
e that �̂�;0 and �̂�;0 determine thebifur
ation values of �̂ and �̂ at whi
h the bifur
ation o

urs, sin
e the speed of the bifur
atingtravelling pulse redu
es to zero at �̂ = �̂�;0 and �̂ = �̂�;0. Sin
e the bifur
ation is 
o-dimensionone we expe
t to �nd a relation between �̂�;0 and �̂�;0.The eigenvalues (3.8) and (3.12) be
ome��v = �1� 12 �̂�;0Æ +O(Æ2); ��w = � 1D � 12 �̂�;0D2 Æ +O(Æ2) ;s�v = �1� 12 �̂�;0Æ +O(Æ2); s�w = �1� 12 �̂�;0D Æ +O(Æ2):We also expand the four equalities in (3.11), using A0 := e�"��;0 ,v�� = �A20 ��̂�;0Æ � 12 � 12A20 +A20 logA0�+ 2"��;1A20Æ +O(Æ2) ;w�� = �A 2D0 � �̂�;0D Æ � 12 � 12A 2D0 + 1DA 2D0 logA0�+ 2 "D ��;1A 2D0 Æ +O(Æ2) :Next, we substitute the above expansions into the jump 
ondition (3.13), and we re
all that
 = Æ, to obtain8>><>>: 
 = �A20 + �A 2D0 (twi
e) ;13p2 = ��̂�;0 � 12 � 12A20 +A20 logA0�+ � �̂�;0D � 12 � 12A 2D0 + 1DA 2D0 logA0� ;0 = 4"��;1 ��A20 + �DA 2D0 � ; (4.2)
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Figure 9: For (�; �; 
; ") = (3; 1; 2; 0:01), the bifur
ation point �̂�;0(�̂�;0) is plotted for D =2; 5; 10; 100. The value of the jump mid-point ��;0 is, respe
tively, 40:547; 47:018; 50:356; 54:393and is 
omputed through (4.2). When D = 1, we have ��;0 = 54:931 and �̂�;0(�̂�;0) = �̂�;0 =1:0460. This is the dotted line in the �gure.
where we equated 
oeÆ
ients on O(1) and O(Æ) terms, respe
tively, and added and subtra
tedthe two O(Æ) equations. Note that the equation for A0 is identi
al to that of the stationaryone-pulse orbit (2.22): near the bifur
ation the width of the travelling pulse is to leading orderequal to that of the stationary pulse. Equations (4.2) determine the three unknowns A0 (whi
hgives ��;0), �̂�;0 as fun
tion of �̂�;0, and ��;1 = 0. The solution �̂�;0 as fun
tion of �̂�;0, is plottedin Figure 9 for several values of D.Remark 4.1 We brie
y 
onsider the 
ase of D large, i.e., D = O( 1Æ ). It immediately followsfrom (4.2) that ��;0 = � 12 1" log �
��� �. (Here, we also have to assume that 
 > �; � > 0 or that
 < �; � < 0). Moreover,�̂�;0(�̂) = 23p2��� (
 � �) + (
 � �) log�
 � �� ���1 +O(Æ) :This �̂�;0 is analogous to the (�̂2)�;0 we �nd in the analysis for travelling pulses of the redu
edtwo-
omponent system (6.1) { see Se
tion 6.
4.2 Sub
riti
ality and super
riti
ality of the bifur
ationTo determine the nature (super
riti
al versus sub
riti
al) of the bifur
ation, see Figure 11, andalso for the stability analysis [11℄, we a
tually need the 
orre
tion terms up to and in
ludingthird order in Æ in the above 
al
ulations. To keep the 
al
ulations within reasonable limits, weset the bifur
ation parameter � equal to one, su
h that in the above analysis the w-
omponent issymmetri
 and has no higher order 
orre
tions, i.e., �̂ = 0 in (3.8), et
. Note that � has also beenset to � = 1 in [18, 24, 25℄. Moreover, most of the numeri
al results presented in [2, 16, 19, 23℄ arefor � = 1. We also assume that �A20 + �DA2=D0 > 0, whi
h implies that the stationary one-pulselimit is not near a saddle-node bifur
ation and that it is stable [11℄.
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Figure 10: Left frame: (�; �;D) = (3; 1; 5). Right frame: (�; �;D) = (3;�1; 5). Note that wedid not plot �̂�;2 but a `s
aled' version �̂�;2=C. To be more pre
ise, C = 332p2�(�̂�;0)4, and thes
aling therefore depends on A0. However, C > 0 for A0 2 (0; 1). Thus, the s
aling does not
hange the sign of �̂�;2. Moreover, note that the verti
al asymptote (for � < 0) is exa
tly where�A20 + �DA 2D0 = 0 (A0 = A
, see (2.25)). The last free parameter, 
, a
tually determines thevalue of A0 via (4.7). Thus for (�; �;D) = (3; 1; 5) it is possible to have a negative, as well as apositive �̂�;2.
Lemma 4.1 Let (�; �; 
;D; �; �; ") be su
h that � = O( 1"2 ); � = 1; � > 0, (2.22) holds, and�A20 + �DA2=D0 > 0, where A0 = e�"��;0 and 0 < " � 1. For 
 = Æ, with " � Æ � 1, a travellingpulse exists for � = 1"2 (�̂�;0 + Æ2�̂�;2 +O(Æ3)), with�̂�;0 = 23p2 1�(1�A20+A20 logA20) > 0 ;�̂�;2 = 332p2�(�̂�;0)4 �1�A20 +A20 logA20 � 13A20 log3A20 + �A40 log2A20(logA20�1)�A20+ �DA2=D0 � : (4.3)
Note that the sign of �̂�;2 determines the nature of the bifur
ation: a negative �̂�;2 yields asub
riti
al bifur
ation, while a positive �̂�;2 yields a super
riti
al bifur
ation. For given systemparameters, we 
an evaluate (4.3) to determine the sign of �̂�;2. Moreover, we observe that it ispossible for the same (�; �;D) for �̂�;2 to take on positive, as well as negative, values, dependingon 
 (via A0), as is illustrated in Figure 10.Proof. The proof 
onsists of an elaborate { but straightforward { asymptoti
 analysis of thejump 
onditions (3.13). Plugging in v�� ; w�� with � = 1 yields, to leading order in ",�(s�v (e�2"��v �� � 1)� 1)� �e�2 "D �� + 
 = �13p2
 :After expanding the two unknown variables �̂ and ��,�̂ = �̂�;0 + Æ�̂�;1 + Æ2�̂�;2 + Æ3�̂�;3 +O(Æ4) ; �� = ��;0 + Æ��;1 + Æ2��;2 + Æ3��;3 +O(Æ4) ;we obtain the leading order approximations of (3.8) and (3.12),��v = �1 � 12 �̂�;0Æ +(� 18 �̂2�;0 � 12 �̂�;1)Æ2 +(� 14 �̂�;0�̂�;1 � 12 �̂�;2)Æ3 +O(Æ4);s�v = �1 � 12 �̂�;0Æ � 12 �̂�;1Æ2 �( 116 �̂3�;0 � 12 �̂�;2)Æ3 +O(Æ4): (4.4)
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With these expressions we dedu
e,e�2"��v �� = e�2"��;0 + e�2"��;0(�"�̂0��;0 � 2"��;1)Æ + e�2"��;0 [� 14"(�̂�;0)2��;0 � "�̂�;1��;0�"�̂�;0��;1 � 2"2�̂�;0��;0��;1 + 12"2(�̂�;0)2(��;0)2 + 2"2(��;1)2 � 2"��;2℄Æ2+e�2"��;0 �� 12"�̂�;0�̂�;1��;0 � "�̂2��;0 � 14"2(�̂�;0)3(��;0)2 + "2�̂�;0�̂�;1(��;0)2� 16"3(�̂�;0)3(��;0)3 � 14"(�̂�;0)2��;1 � "�̂�;1��;1 + 32"2(�̂�;0)2��;0��;1�2"2�̂�;1��;0��;1 � "3(�̂�;0)2(��;0)2��;1 � 2"2�̂�;0(��;1)2 � 2"3�̂�;0��;0(��;1)2� 43"3(��;1)3 � "�̂�;0��;2 � 2"2�̂�;0��;0��;2 + 4"2��;1��;2 � 2"��;3� Æ3 +O(Æ4) ;
(4.5)

and, e�2 "D �� = e�2 "D ��;0 � 2D"��;1e�2 "D ��;0Æ + e�2 "D ��;0 [ 2D2 "2(��;1)2 � 2D"��;2℄Æ2+e�2 "D ��;0 [� 43D3 "3(��;1)3 + 4D2 "2��;1��;2 � 2D"��;3℄Æ3 +O(Æ4) : (4.6)(Re
all that "��;j = O(1).)Combining (4.4), (4.5), and (4.6), we �nd to leading order (twi
e)�A20 + �A 2D0 = 
 ; (4.7)whi
h agrees with the �rst equation in (4.2).The O(Æ)-
orre
tions read� 12��̂�;0(1�A20 +A20 logA20) + 2"��;1(�A20 + �DA 2D0 ) = � 13p2 :By adding and subtra
ting the above two equations, we obtain��;1 = 0 ; �̂�;0 = 23p2 1�(1�A20 +A20 logA20) ;whi
h agrees with (4.2), sin
e �̂�;0 = 0. Note that the fun
tion 1�A20 +A20 logA20 is positive forall A0 2 (0; 1) { it de
reases monotoni
ally from one to zero as A0 in
reases from zero to one.Sin
e � > 0 it follows that �̂�;0 > 0.At O(Æ2), we �nd0 = � 12��̂�;1(A20 � 1)� �A20[� 14"(�̂�;0)2��;0 � "�̂1��;0 + 12"2(�̂�;0)2(��;0)2 � 2"��;2℄� 12"�(�̂�;0)2��;0A20 + 2 �D"��;2A 2D0(sin
e ��;1 = 0). Subtra
ting the two equalities implies��̂�;1(1�A20 +A20 logA20) = 0 ) �̂�;1 = 0 :
Adding both terms yields ��;2 = 116 1" �A20(�̂�;0)2 logA20(logA20 � 1)�A20 + �DA2=D0 :
We note that logA20�1 < logA20 < 0 and �A20+ �DA2=D0 > 0, therefore, sgn(��;2) = sgn(�) = +1.Thus, the width of the pulse (2��) is larger than the leading order width (2��;0), i.e., the widthof the travelling pulse is larger than the width of the standing pulse.26



The O(Æ3)-term is given by0 = ��( 116 (�̂�;0)3 � 12 �̂�;2)(A20 � 1)� 12��̂�;0A20[� 14"(�̂�;0)2��;0 + 12"2(�̂�;0)2(��;0)2 � 2"��;2℄��A20["�̂�;2��;0 � 14"2(�̂�;0)3(��;0)2 + 16"3(�̂�;0)3(��;0)3 + "�̂�;0��;2 � 2"2�̂�;0��;0��;2 � 2"��;3℄+2 �D"��;3A 2D0 :Adding both terms implies ��;3 = 0, subtra
ting yields,�( 116 (�̂�;0)3 � 12 �̂�;2)(A20 � 1)� 12��̂�;0A20[� 14"(�̂�;0)2��;0 + 12"2(�̂�;0)2(��;0)2 � 2"��;2℄��A20["�̂�;2��;0 � 14"2(�̂�;0)3(��;0)2 + 16"3(�̂�;0)3(��;0)3 + "�̂�;0��;2 � 2"2�̂�;0��;0��;2℄ = 0 ;whi
h 
an be rewritten as0 = ��A20�̂�;0"��;2 logA20 + 148�A20(�̂�;0)3 log3A20 � 116�(�̂�;0)3(1�A20 +A20 logA20)+ 12��̂�;2(1�A20 +A20 logA20) :Then, using the expression for �̂�;0 and ��;2, we obtain�̂�;2 = 18(�̂�;0)3 � 132p2�A20(�̂�;0)4 log3A20 + 332p2�2A40(�̂�;0)4 log2A20(logA20 � 1)�A20 + �DA2=D0 ; (4.8)whi
h 
an be rewritten as in (4.3). 2For D large, we 
an analyti
ally determine the sign of �̂�;2 in (4.3), as we now show.Corollary 4.2 Let (�; �; 
;D; �; �; ") and A0 be as in Lemma 4.1 and assume that D = 1Æ with0 < "� Æ � 1. De�ne AZ0 2 (0; 1) as the (unique) solution of1�A20 +A20 logA20 + 23A20 log3A20 �A20 log2A20 = 0 (4.9)(AZ0 = 0:11063 : : :). Then, �̂�;2 > 0 for parameter 
ombinations su
h that 0 < A0 < AZ0 + O(Æ)and �̂�;2 < 0 for 1 > A0 > AZ0 +O(Æ).Proof. It follows from (4.3) that, to leading order in Æ,�̂�;2jD=O(Æ�1) = 332p2�(�̂�;0)4[1�A20 +A20 logA20 � 13A20 log3A20 +A20 log2A20(logA20 � 1)℄= 332p2�(�̂�;0)4[1�A20 +A20 logA20 + 23A20 log3A20 �A20 log2A20℄ =: C�̂ 0�;2 ;with C = 332p2�(�̂�;0)4 > 0 and �̂ 0�;2 = 1 � A20 + A20 logA20 + 23A20 log3A20 � A20 log2A20. Thussgn(�̂2) = sgn(�̂ 02). We noti
e that �̂ 02(0) = 1 and �̂ 02(1) = 0. We now show that �̂ 02(s), withs := A20, has a negative minimum by di�erentiating,dds �̂ 02 = (log s)�23 log2 s+ log s� 1� :Thus, with z := log s (so that z 2 (�1; 0)), we see that �̂ 02(z) has a unique extremum if23z2+ z�1 = 0, i.e., z = zM = � 34 � 14p33. This implies that AM0 = e� 18 (3+p33) 2 (0; 1), so that�̂ 02(AM0 ) = 1� e� 14 (3+p33)�314 + 54p33� < 0:Hen
e, AM0 determines a negative minimum of �̂ 0�;2, whi
h implies �̂ 0�;2 must 
hange sign on
e forA = AZ0 2 (0; AM0 ), where AZ0 is determined by (4.9). 2An additional 
onsequen
e of Lemma 4.1, that holds for more general values of D, is27
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Figure 11: The solution 
urve of equation (3.13) in the (�̂ ; 
) plane for the parameter values(�; �; 
;D; �; ") = (5;�3; 1; 4; 1; 0:01). We have 
hosen the parameters in su
h a fashion that theysatisfy the 
onditions in Remark 4.2. In the left frame we observe a sub
riti
al bifur
ation at�̂ = �̂�;0 = 6:01363. Moreover, we observe that as �̂ goes to in�nity the upperbran
h, 
+(�̂), goesto the theoreti
ally-predi
ted, leading order value, 32p2(�� 
) = 6p2, see (3.15). Finally, fromthis numeri
al 
ontinuation we observe that the two bran
hes merge at a saddle-node bifur
ationat �̂numSN = 0:84917 and 
numSN = 6:3027. In the right frame, the region near �̂ = �̂�;0 is magni�ed.
Corollary 4.3 Let (�; �; 
;D; �; �; ") and A0 be as in Lemma 4.1. Furthermore, assume that� < 0, �D > ��, A0 > A
 > AZ0 (with A
; AZ0 as in (2.25), (4.9), respe
tively), then thebifur
ation is sub
riti
al, i.e., �̂�;2 < 0.Proof. Observe that in this 
ase�A40 log2A20(logA20 � 1)�A20 + �DA2=D0 < A20 log2A20(logA20 � 1) < 0:
Therefore, �̂�;2(A0) < C�̂ 0�;2(A0), with �̂ 0�;2(A0) as de�ned above, and C�̂ 0�;2(A0) is negative forA0 > AZ0 . 2Remark 4.2 If, in addition to the 
onditions in Corollary 4.3, it is also assumed that � > 
,then it follows from our analysis in Se
tion 3.2 that there is a travelling pulse with speed 
 =32p2(� � 
) + O(Æ; ") > 0 for �̂ � 1 (3.15). This indi
ates that the 
urve 
 = 
(�̂) has a foldstru
ture, i.e., for in
reasing �̂ (and all other parameters �xed) there is a saddle-node bifur
ationof travelling pulses at �̂ = �̂SN < �̂�;0 at whi
h two travelling pulses bifur
ate with speeds
�(�̂) > 0 and 
�(�̂SN ) = 
SN > 0; the pulse asso
iated to 
�(�̂) merges with the stationarypulse at �̂ = �̂�;0, while the other pulse exists for all �̂ > �̂SN , so that 
+(�̂) ! 32p2(� � 
) as�̂ ! 1. This 
an be 
he
ked by using a 
ontinuation method for the solutions of (3.13), seeFigure 11. Hen
e, there exist parameter 
ombinations for whi
h two types of travelling pulses
oexist with the stationary pulse (for �̂SN < �̂ < �̂�;0). Both the stationary pulse and thetravelling pulse asso
iated to 
+(�̂) may be stable [11℄.
5 Stationary two-pulse solutions
In this se
tion, we establish the existen
e of lo
alized, symmetri
, standing, two-pulse solutionsof (1.6). We 
onstru
t these pulses as homo
lini
 orbits 
�2p;j(�) to the 
riti
al point P�" .28



5.1 The 
onstru
tion of 
�2p;j(�) homo
lini
 to P�"We sear
h for stationary pulse-like solutions. Therefore, the PDE (1.7) again redu
es to (2.1),and the basi
 observations (on the �xed points, the redu
ed limits, the slow manifolds, et
.) arethe same as in Se
tion 2.1. However, for symmetri
 standing two-pulse solutions, we have todistinguish nine di�erent regions instead of the �ve regions as we did for the one-pulse solutions{ see Se
tion 2.2. We again parametrize the two-pulse solutions so that its u; v; w-
omponentsare at a lo
al extremum at � = 0. However, there are three lo
al extrema, see Figure 1, andfor symmetry 
onsiderations we 
hoose to put the zero of the �-axis at the se
ond lo
ation, theone exponentially 
lose to M�" . It turns out that v�2p;j(0) and w�2p;j(0) are lo
al minima, whileu�2p;j(0) is a lo
al maximum, see Figure 1 and Figure 12. We de�ne the four `jump mid-points'of 
�2p;j by ��1;2� (not to be 
onfused with the ��;1; ��;2 of the previous se
tion). Where the last`ba
k' (i.e., the �nal jump of M+" ba
k to M�" ) of 
�2p;j(�) 
rosses the fu = 0g-hyperplane at� = �1� , and the last front of 
�2p;j(�) 
rosses the same hyperplane at � = �2� . Note that by
onstru
tion 0 < �2� < �1� . The reversibility symmetry implies that ��1� is the jump mid-point ofthe �rst front and ��2� is the jump mid-point of the �rst ba
k. Thus,
�2p;j(��1�) = (0;�p1�; v1�;�q1�; w1�;�r1�) ; 
�2p;j(��2�) = (0;�p2�; v2�;�q2�; w2�;�r2�) : (5.1)We assume that �1� , �2� , as well as �1� � �2� , are large, i.e., �1;2� and �1� � �2� are O( 1" ). We nowde�ne the four fast intervals I2;4;6;8f and the �ve slow intervals I1;3;5;7;9sI2;4f := ���1;2� � 1p" ;��1;2� + 1p"� ; I6;8f := ��2;1� � 1p" ; �2;1� + 1p"� ; I1s := ��1;��1� � 1p"i ;I3;7s := h��1;2� + 1p" ;��2;1� � 1p"i ; I5s := h��2� + 1p" ; �2� � 1p"i ; I9s := h�1� + 1p" ;1� :The nine di�erent regions are then1: The dynami
s take pla
e exponentially 
lose to the slow manifold M�" : � 2 I1s .2: The dynami
s take pla
e in the fast �eld: � 2 I2f .3: The dynami
s take pla
e exponentially 
lose to M+" : � 2 I3s .4: The dynami
s take pla
e in the fast �eld: � 2 I4f .5: The dynami
s take pla
e exponentially 
lose to M�" : � 2 I5s .6: The dynami
s take pla
e in the fast �eld: � 2 I6f .7: The dynami
s take pla
e exponentially 
lose to M+" : � 2 I7s .8: The dynami
s take pla
e in the fast �eld: � 2 I8f .9: The dynami
s take pla
e exponentially 
lose to M�" : � 2 I9s .The analysis of the formal 
onstru
tion is now nearly the same as for the standing one-pulse 
ase(Se
tion 2.2); the only di�eren
e is that it involves a bit more bookkeeping. However, qualita-tively, nothing 
hanges; for example we still have �2;4;6;8f (v; w; q; r) = O(p"), the equivalent of(2.15). The homo
lini
 v; w-
omponent on the slow manifolds are still governed by (2.10) and(2.11). Together with the usual boundary 
onditions, of whi
h there are in total forty, we get
v2p(�) =

8>>>><>>>>:
2e"� �sinh �"�1��� sinh �"�2���� 1 in 1�e�"(�+�1�) � e"(���1�) � 2e"�(sinh ("�2�)) + 1 in 3�e�"(�+�1�) + e�"(�+�2�) + e"(���2�) � e"(���1�) � 1 in 5�e�"(�+�1�) � e"(���1�) � 2e�"�(sinh ("�2�)) + 1 in 72e�"� �sinh ("�1�)� sinh ("�2�)�� 1 in 9 ; (5.2)
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and likewise
w2p(�) =

8>>>><>>>>:
2e "D � �sinh � "D �1��� sinh � "D �2���� 1 in 1�e� "D (�+�1�) � e "D (���1�) � 2e "D �(sinh ( "D �2�)) + 1 in 3�e� "D (�+�1�) + e� "D (�+�2�) + e "D (���2�) � e "D (���1�) � 1 in 5�e� "D (�+�1�) � e "D (���1�) � 2e� "D �(sinh ( "D �2�)) + 1 in 72e� "D � �sinh ( "D �1�)� sinh ( "D �2�)�� 1 in 9 : (5.3)

By the reversibility symmetry (2.2), there are two Melnikov 
onditions (instead of the expe
tedfour), whi
h are analogous to (2.17),�v1;2� + �w1;2� + 
 = 0 ; (5.4)with v1;2� and w1;2� de�ned in (5.1). When we de�ne A1 := e�"�1� and A2 := e�"�2� (0 < A1 <A2 < 1), and 
ombine this with the above results (5.2),(5.3), and (5.4), we obtain8<: ��A21 + �A1A2 � �A1A�12 � �A 2D1 + �A 1D1 A 1D2 � �A 1D1 A� 1D2 + 
 = 0+�A22 � �A1A2 � �A1A�12 + �A 2D2 � �A 1D1 A 1D2 � �A 1D1 A� 1D2 + 
 = 0 : (5.5)
By adding and subtra
ting, this system 
an be transformed into8<: G1(A1; A2) := �(A1 �A2)2 + �(A 1D1 �A 1D2 )2 = 0G2(A1; A2) := �(A22 �A21)� 2�A1A�12 + �(A 2D2 �A 2D1 )� 2�A 1D1 A� 1D2 = �2
 : (5.6)
The above formal analysis gives rise to the following theorem.Theorem 5.1 Let (�; �; 
;D; �; �; ") be su
h that (5.6) has K solution pairs (A1; A2) with 0 <A1 < A2 < 1. Let " > 0 be small enough. If K = 0, then there are no homo
lini
 orbits to P�"in (2.1) that have a stru
ture as sket
hed in Figure 12. If K > 0, there are K homo
lini
 orbits
�2p;j(�), j 2 f1; : : : ;Kg, to P�" in (2.1) (with stru
ture as in Figure 12). These 
orrespond tosymmetri
 standing two-pulse solutions of (1.6).Given the form of equations (5.6), it is natural to solve A1 and 
 as fun
tion of A2 and the systemparameters �; � and D. In Figure 13, both A1 and 
 are plotted. Note also that G1(A1; A2)
annot vanish in (5.6) if sgn(�) = sgn(�). Thus, there only exist homo
lini
 2-pulse solutions ifsgn(�) 6= sgn(�) { see se
tion 6.Proof of Theorem 5.1 A symmetri
 standing two-pulse 
�2p;j(�) is reversible (2.2) and we
an therefore argue along the same lines as in the proof of Theorem 2.1. In fa
t, the proof ofthis theorem goes in essen
e very similar to that of Theorem 2.1. Therefore, we will omit mostdetails. By the �rst Melnikov 
ondition in (5.4), there exists a one-parameter family of orbits
1;�het (�; v1�;w1�(v1�)) 2Wu(P�" ) \W s(M+" ). We de�ne the tube T �1;� �Wu(P�" ) as the 
olle
tionof orbits in Wu(P�" ) that are exponentially 
lose to 
1;�het (�; v1�;w1�(v1�)) for � < ��1� . All orbitsin T �1;� approa
h M+" and follow the slow 
ow on M+" for some `time' (whi
h may be in�nite),after whi
h they take o� parallel (and exponentially 
lose to) Wu(M+" ). In other words, nearM+" T �1;� is strongly stret
hed along the dire
tion of Wu(M+" ). It thus follows by the appli-
ation of the se
ond Melnikov 
ondition in (5.4) that T �1;� interse
ts W s(M�" ); the interse
tionT �1;� \ W s(M�" ) is again two-dimensional, i.e., it 
onsists of a one-parameter family of orbits� Wu(P�" ) \W s(M�" ). As in the proof of Theorem 2.1, it 
an now be shown that there is aunique orbit 
2;�0;� (�) � T �1;�\W s(M�" ) that is homo
lini
 toM�" su
h that 
2;�0;� (0) 2 fq = r = 0g{ note that this also determines the position of the symmetry point � = 0. Again, the algebra30
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Figure 12: A s
hemati
 sket
h of a symmetri
 two-pulse 
�2p;j(�) homo
lini
 to P�" .
leading to the 
onstru
tion of 
2;�0;� (�) is equivalent to the above analysis and yields at leadingorder (5.6). The existen
e of the 2-pulse homo
lini
 orbits 
�2p;j(�) now follows by arguments thatare identi
al to those in Theorem 2.1. It is based on the 
onstru
tion of the sub-tube T �2;� � T �1;�around 
2;�0;� (�), its symmetri
al 
ounterpart T +2;� around the orbit 
2;+0;� (�) and the appli
ation ofthe reversibility symmetry. 2Remark 5.1 In the proof presented above we have used that the jump mid-points v1;2� and w1;2�satisfy 
ertain 
onstraints. In parti
ular, v1� 2 (�1; 0), w1� = � 1� (�v1� + 
), v2� 2 (v1�; V ) andw2� = � 1� (�v2� + 
), where V = � �1�+�2�2 � 12" log �1� e�2"�2� + e�"(�1�+�2�)�. These 
onstraintsarise naturally from the requirement that the tra
ked orbits lie on the 
orre
t side of the stableand unstable manifolds of the slow manifold, so that they 
an have a se
ond pulse.Remark 5.2 In our analysis we have fo
used on the existen
e of lo
alized one- and two-pulsepatterns. As for instan
e in [6℄, the same geometri
al approa
h as in the proofs of Theorems2.1, 3.1 and 5.1 
an be applied to establish the existen
e of many other kinds of stationary ortravelling patterns, su
h as N -pulse solutions and various kinds of spatially periodi
 wave trains.We refrain from going into the details here. However, we do noti
e that these patterns 
an bestable and do play an important role in the dynami
s of (1.7) { see se
tion 7.1 and espe
iallyFigure 15.
5.2 The existen
e of two-pulse solutionsJust as was the 
ase for the K of Theorem 2.1, it is, a priori, not 
lear whether there exist pa-rameter 
ombinations for whi
h the K of Theorem 5.1 is non-zero. To show that these parameterregimes do exist we �rst 
hoose an expli
it D as an example, that is, we put D = 2. Naturally,we also have to assume sgn(�) 6= sgn(�). With this spe
ial 
hoi
e of D we analyze (5.6). Ittransforms into( H1(A1; A2) := �(A1 �A2)2 + �(pA1 �pA2)2 = 0H2(A1; A2) := �(A22 �A21)� 2�A1A2 + �(A2 �A1)� 2�qA1A2 = �2
 : (5.7)
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Observe that the equality H1(A1; A2) = 0 does not depend on 
. Moreover, 
 only appears inthe right hand side of H2(A1; A2) = �2
. That is, 
 only shifts H2(A1; A2) up or down. So,instead of solving for A1 and A2 in terms of the unknown parameters �; � and 
, it is mu
heasier to �x �; � and A2 and to determine A1 and 
 su
h that (5.7) is solved. A
tually, by doingso, we impose, alongside � and �, one of the jump mid-points �2� and try to lo
ate the se
ondjump mid-point �1� and 
 su
h that (1.7) possesses a standing two-pulse. Of 
ourse, we 
ouldalso 
hoose to start with �; �, and A1 and determine A2 and 
 that satisfy (5.7).The zero of H1(A1; A2), for whi
h 0 < A1 < A2, is given by the relationpA1 +pA2 =p��=� : (5.8)When we implement this into formula (5.7) for H2(A1; A2) we �nd, after some manipulation, aunique 
:
 = �� 2�(1 +A22)r� ��A2 � � 1 + 3A2 + 1A2 �r�A2�� �r� ��A2! : (5.9)However, there are also restri
tions on the 
hoi
e of A2. We need 0 < A1 < A2 < 1. Therefore,�14 �� < A2 < min����; 1� : (5.10)We 
on
lude that if A2 satis�es (5.10), there is a (�; �; 
)-parameter 
ombination su
h that (5.7)is satis�ed, i.e., su
h that a two-pulse solution exists. However, if (5.10) 
annot be satis�ed {whi
h is the 
ase when j4�j < j�j, there are no su
h two-pulse solutions.This nonexisten
e result 
an be generalized to all D > 1:Corollary 5.2 Let sgn(�) 6= sgn(�). There is an open region in (�; �; 
;D)-spa
e for whi
hhomo
lini
 two-pulse solutions as des
ribed in Theorem 5.1 exist. However, if j�jD2 < j�j, thenthere are no su
h two-pulse solutions.Proof. We start again by observing that G1(A1; A2) = 0 does not depend on 
, and that the 
in G2(A1; A2) = �2
 only shifts G2(A1; A2) up or down. So, again instead of solving A1 and A2in terms of �; � and 
 via (5.6), we solve this equation for given �; � and A2 with the unknownparameters A1 and 
.The 
ondition 0 < A1 < A2 < 1 yields the following generalization of (5.10)�� ��D2� 12 DD�1 < A2 < min(����� 12 DD�1 ; 1) : (5.11)Here, the latter inequality ensures A2 2 (0; 1), and the former implies A1 < A2. This interval isempty when j�jD2 < j�j. 2
5.3 Asymptoti
s for D !1In this se
tion, we analyze the large D asymptoti
s of solutions of equation (5.6). From Figure 13,we observe that, over a large portion of the interval A2 2 (0; 1), the solution 
urves for A1 lienear the axis, and the solution 
urves for 
 lie near the lower dashed 
urve. Moreover, these
urves approa
h their respe
tive asymptotes as D in
reases. We establish this result pre
isely inthe following lemma: 32



A2

A1 A1 = A2

D = 2
D = 5

D = 20
D = 10

q���



q���

A2
D = 20D = 10

D = 2
D = 5

� + �

Figure 13: In the left frame, A1 is plotted as fun
tion of A2 for several values of D. In the rightframe, 
 is plotted as fun
tion of A2 for the same values for D. The dashed 
urve representsthe asymptoti
 behavior for D large and is given by (5.12). The two-pulse orbits are typi
ally
reated or annihilated in a saddle-node bifur
ation { see Se
tion 7, Figure 15.
Lemma 5.3 Assume that � > 0 > 
 > �. Then, for stri
tly O(1) values of A2 2 (0;p��=�), asmeasured with respe
t to the asymptoti
ally small parameter 1=D, the solutions A1 = A1(�; �;A2; D)and 
 = 
(�; �;A2; D) of equation (5.6) satisfy, to leading order,

A1 = �1�r���A2�D ; 
 = �� r��� �A2!2 as D !1: (5.12)
The lower dashed 
urve in the right frame of Figure 13 is this parabola of 
 as fun
tion of A2.It is also useful to 
ombine the results of (5.12) of this lemma into expressions for A1 and A2 interms of the given system parameters. The result is, to leading order,A1 = �
��D2 ; A2 =r��� �r� 
� :We also remark that in both frames there is a boundary layer at A2 = A1, whi
h is why werequire A2 to be stri
tly of O(1) for this result and we re
all that the existen
e 
onstru
tionrequires that A1 < A2. In the boundary layer, the graph of A1 limits on the diagonal, with aslope of �1, while the graph of 
 is nearly verti
al. Although the asymptoti
 analysis is nottoo involved, we refrain from going into the details here. Nevertheless, we noti
e that, by (5.6),
 = �+ � in the limit A2 # A1, see Figure 13.Proof of Lemma 5.3 We observe that, for A2 stri
tly of O(1) in (0,1), we may assume thatA1 = CD ; (5.13)to leading order, for some C 2 (0; 1). Indeed, if one instead assumed that A1 = aÆ� to leadingorder, for Æ = 1=D and for some � > 0, then from the �rst equation in (5.6) one would �nd thatA2 = 0 to leading order, whi
h is a 
ontradi
tion. Hen
e, with the assumption (5.13), the �rstequation in (5.6) be
omes �A22 + �(C � 1)2 = 0;to leading order, where we used thatA1=D2 = 1+O(1=D) forA2 2 (0; 1), and that (1=D) log(A2)�C. Solving, one �nds, to leading order,A1 = �1�r���A2�D ; (5.14)
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whi
h is pre
isely the �rst formula of (5.12).With the asymptoti
s for A1 in hand, one may use the se
ond formula in (5.6) to �nd theasymptoti
s for 
. To leading order,
 = �12 "�A22 + � 1� �1�r���A2�2!� 2� �1�r���A2�# :Simplifying the right member, we �nd pre
isely the asymptoti
 result (5.12) for 
. 2To 
on
lude this se
tion on the large D asymptoti
s, we 
omment brie
y on the form of theW pro�le for stationary two-pulse solutions in the interval between the two pulses. From theabove asymptoti
s, we �nd, to leading order,"� = O(1) ; "�2� = � logA2 = O(1) ; "�1� = �D log�1�r���A2� = O(D) : (5.15)Hen
e, from (5.3), we �nd in region 5, to leading order,w2p(�) = �e� "D (�+�1�) + e� "D (�+�2�) + e "D (���2�) � e "D (���1�) � 1= 2q���A2 � 1= 1� 2q 
� : (5.16)
Therefore, for ea
h A2 2 (0;p��=�), the W -
omponent is 
onstant to leading order, where the
onstant is given by (5.16). Moreover, we observe thatW takes on all of the values in the interval(�1; 1), sin
e the above analysis applies for all A2 2 (0;p��=�).A stability analysis similar to that presented in [11℄ shows that the two-pulse solutions are stablefor parameter 
ombinations in the `boundary layer'. However, they are unstable for parametervalues near the dashed 
urve in the asymptoti
 regime studied in Lemma 5.3.
6 The two-
omponent model
In this se
tion, we investigate the two-
omponent (U; V )-subsystem of the three-
omponentmodel, that is, we send D to in�nity and assume that the W -
omponent is 
onstant at W = �1everywhere in the PDE (1.6). The PDE model redu
es to� Ut = "2Uxx + U � U3 �"(�2V + 
2)�2Vt = Vxx + U � V ; (6.1)with the same assumptions as before, 0 < " � 1; 0 < �2 � 1="3 and �2; 
2 2 R . Note thatthe notation for the parameters has the following 
orresponden
e with the parameters of thethree-
omponent model: �2 = �; �2 = � and 
2 = 
 � �.It 
an be shown with the same te
hniques used in this arti
le that for �2 = O(1) the two-
omponent system has standing one-pulse solutions homo
lini
 to P�2;" = (u�2;"; 0; u�2;"; 0) withu�2;" = �1 + 12"(�2 � 
2) +O("2) if there exists an A 2 (0; 1) satisfying�2A2 = 
2 +O(p") ;re
all (2.22). Hen
e, we immediately observe that ne
essary 
onditions for a standing pulse ho-mo
lini
 to P�2;" to exist are that sgn(�2) = sgn(
2) and 0 < j
2j < j�2j. Also, the existen
e of34



travelling pulse solutions to P�2;" for large �2 
an be proved, and in the end it boils down to solvinga system of equations whi
h is a simpli�
ation of (3.13). Moreover, when we in
rease �2 from anO(1)-parameter to an O("�2)-parameter a travelling pulse solution bifur
ates from a standingpulse solution at (�2)0;� = 1"2 (�̂2)0;� = 1"2 23p2��2 � 
2 + 
2 log � 
2�2��. This bifur
ation 
an besuper
riti
al, as well as sub
riti
al. See also Se
tion 4 and espe
ially the proof of Lemma 4.2.Finally, the two-
omponent system possesses no symmetri
 standing two-pulse solutions to P�2;".Physi
ally, this 
an be explained by the fa
t that the model has too few free 
onstants (too fewdimensions). The absen
e of two-pulse solutions is also plausible when we look at Theorem 5.1.There only exists a standing two-pulse solution if at least sgn(�) 6= sgn(�) and for the two-
omponent system this 
ondition 
annot be ful�lled be
ause there is no equivalent parameter for� in the two-
omponent system.To summarize, we have shown that the two-
omponent model also possesses stationary andtravelling pulse solutions. However, it does not support two-pulse solutions.Remark 6.1 There are two ways in whi
h the three-
omponent system (1.6) may limit on atwo-
omponent system, either by 
onsidering W ! V , asso
iated to D # 1, or by W ! W0,a 
onstant when D ! 1. In the former 
ase one has to make the additional assumption that� = �. Sin
e in most studies of systems like (1.1)/(1.6) D � 1 and � � �, we do not 
onsiderthis limit here.If one 
onsiders the limit D ! 1 in Theorems 2.1 and 3.1 for one-pulse solutions, then itimmediately follows that W ! �1 uniformly on R { see for instan
e (2.21). However, sin
ethe two-
omponent limit 
annot have standing two-pulse solutions, taking the limit D ! 1 inTheorem 5.1 is less straightforward. In fa
t, this limit has already been dis
ussed in se
tion 5.3(under the assumption that A2 = O(1)). It follows from (5.15) that the width of the pulsesin the two-pulse solution in
reases linearly with D, while the distan
e between the pulses ap-proa
hes a �nite limit. Thus, on bounded intervals, the two-pulse solution of the three-
omponentsystem limits on a one-pulse solution of a two-
omponent (U; V )-system that is homo
lini
 to(U; V ) = (+1;+1) (with W ! 1� 2p
=�, the 
onstant value given in (5.16)).
7 Simulations, 
on
lusions and dis
ussion
7.1 SimulationsIn this se
tion, we show the results of some numeri
al simulations to further illustrate the theorypresented in this arti
le and also to illustrate some of the basi
 pulse intera
tions and instabilities.These simulations are 
arried out using the numeri
al software presented in [1℄.We already illustrated a stationary one-pulse solution in the left frame of Figure 1. Therefore,we begin here with some travelling pulses of the type 
onstru
ted in Se
tion 3. The pulses shownin Figure 14 exist for values of � greater than the theoreti
ally-predi
ted value �̂�;0 = 0:59 for thebifur
ation in whi
h travelling pulses are 
reated (whi
h translates into an uns
aled ��;0 = 59). Inthe left frame, the travelling pulse 
ollides with its mirror image pulse at the boundary, sin
e theboundary 
onditions are of homogeneous Neumann type, and afterwards they repel ea
h other.By 
ontrast, in the right frame, the pulse and its mirror image 
ollide and then annihilate. The
hangeover from repulsion to annihilation after the 
ollision o

urs at �numann = 112. Finally, weobserve that the numeri
ally-observed value of the bifur
ation to travelling waves is �num� = 103,
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Figure 14: Stable travelling pulses. The parameter values are (�; �; 
;D; �; ") = (6; 3; 4; 2; 1; 0:1),and � is the bifur
ation parameter. Here, we plotted a boun
ing travelling pulse solution for� = 110 and an annihilation of a travelling pulse for � = 115 .
whi
h is within the relative error of magnitude O(1=") = O(10) of the leading order theoreti
alvalue ��;0 = 59. Of 
ourse, in these simulations " is not yet really small, and hen
e we 
he
kedthat the value of �num� de
reases toward the value predi
ted by the leading order theory as "is de
reased. For example, for " = 0:01, we �nd �num� = 5:95� 103 (
ompared to 5:9 � 103theoreti
ally).Next, we illustrate the theoreti
al results for stationary two-pulse solutions of (1.6), as derivedin Se
tion 5. For ea
h of the four values of 
 = 0:8; 0:75;�0:25;�0:3, Figure 15 shows the 
orre-sponding stationary solution. Based on the simulations for these parameter values, we �nd thatthe homogeneous ba
kground state U = �1 undergoes a sub
riti
al bifur
ation into a two-pulsesolution at 
num = 0:78. Likewise, due to the reversibility symmetry, the homogeneous stateU = +1 bifur
ates super
riti
ally into a two-pulse solution at 
num = �0:78, though we do notshow this. In addition, we observe that, as we de
rease 
 from 0:78, the width of the pulsesin
reases, until there is a bifur
ation at 
num = �0:27 at whi
h the pulses 
oales
e, and thesolution is U = +1 everywhere, ex
ept inside an interior layer and inside the layers at the bound-aries of the 
omputational interval. This solution is a spatially periodi
 solution. Moreover, theobserved value for this 
oales
en
e of the pulses agrees well with the theoreti
ally-predi
ted valueof 
 = �0:31 for the saddle-node bifur
ation, whi
h o

urs at the minimum in the 
urve shownin the right frame of Figure 13.One of the most 
ommonly-en
ountered bifur
ations that the pulse solutions undergo is a super-
riti
al Hopf bifur
ation in whi
h the widths, and heights, of the pulses os
illate periodi
ally intime. In Figure 16, we show a breathing one-pulse in the left frame, and a breathing two-pulsein the right frame. For the one-pulse solution (with " = 0:1), the Hopf bifur
ation o

urs at�numH = 47. Moreover, we �nd that the breather dies out for � = 49:8. For the two-pulse solution(with " = 0:01), the Hopf bifur
ation takes pla
e at �numH;2p = 4590. Moreover, at � = 5060, the
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Figure 15: Plots of the stationary solutions of the three-
omponent model (1.6) for four val-ues of 
: 
 = 0:8; 0:75;�0:25;�0:3: The values of the other parameters are (�; �;D; �; �; ") =(2;�1; 5; 1; 1; 0:01).
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Figure 16: Stable breathing one-pulse and two-pulse solutions. For the simulation shown in theleft frame, � = 49:7, and the other parameters are (�; �; 
;D; �; ") = (6; 3; 4; 10; 1; 0:1). Also, wenote that the interval used in the simulation is � 2 [�100; 100℄, however we have displayed onlya subinterval to better display the breathing behavior. For the simulation shown in the rightframe, � = 5000, and the other parameters are (�; �; 
;D; �; ") = (2:2;�1; 0; 10; 1; 0:01). Also,we note that the interval used in the simulation is � 2 [�1000; 1000℄.
breathing two-pulse solution be
omes unstable and dies out. We note that we have observedbreathing two-pulse solutions for whi
h the pulse widths breath in an antisymmetri
 manner.S
attering of pulses is also observed in the three-
omponent model (1.7). In the left frame of Fig-ure 17, we show the V -
omponent of a two-pulse solution in whi
h the pulses initially approa
hea
h other, spend a substantial amount of time at a nearly 
onstant distan
e from ea
h otherwith a signi�
antly-de
reased amplitude, and then regain their original amplitudes and repelea
h other. The pulses 
ontinue to repel ea
h other until they re
e
t o� the boundary, and thepro
ess repeats. A similar phenomenon has been observed in [16, 17℄. There the unstable, sta-tionary two-pulse, whi
h the two-pulse data approa
hes, is 
alled a `s
attor' (or `separator'). Theimportan
e of a s
attor stems from the observation made in [16, 17℄ that the forward evolutionof two-pulse data that approa
hes it is determined by where that data lies with respe
t to thestable and unstable manifolds of the s
attor or separator solution. The relation between s
attorsand the two-pulse solutions 
onstru
ted in this arti
le is the subje
t of future investigation.We emphasize that the time interval shown in Figure 17 is long and that the length of timewhere the two pulses are near to ea
h other is also long in 
omparison to the time interval overwhi
h the pulses move an O(1) distan
e. Moreover, we found that the duration of this timeinterval 
an be 
hanged by varying the parameter values. Finally, it is worth noting that, duringthe time that the two pulses are near the boundaries, they are also near their 
ounterparts a
rossthe boundary, in what also appears to be a s
attor state.
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Figure 17: S
attering of two pulses. In the left frame, we show the V -
omponent over a longtime interval, and in the right frame we show the U -
omponent during the third 
entral s
at-tering event (not shown for the V -
omponent). The parameter values are (�; �; 
;D; �; �; ") =(6; 3; 2; 2; 6500; 1; 0:01).
To 
on
lude this brief se
tion illustrating some of the pulse dynami
s, we show the spatio-temporal evolution of four-pulse initial data in Figure 18. Initially, the four pulses approa
h ea
hother. Then, they start to breath in a time-periodi
 manner, until �nally the middle two pulsesdie out and the two remaining pulses be
ome stationary. In the right frame, we have zoomedin on the time interval 
ontaining the last few breathing periods, and here the destabilizationpro
ess is visible in detail. The maximal widths per period of the inner two pulses in
rease asthe time of annihilation gets 
loser and 
loser, while the minimal widths de
rease. One 
an seethat during the �nal os
illation the maximal pulse widths ex
eed the lengths of the gaps betweenthe pulses. Finally, stepping ba
k out to the time s
ale shown in the left frame, one sees that thetime asymptoti
 state is a stable two-pulse solution of the type 
onstru
ted in Se
tion 3, withpulse 
enters well inside � = �1000 and � = 1000 on the domain � 2 [�2000; 2000℄.
7.2 Con
lusions and dis
ussionIn this arti
le, we established the existen
e of stationary and travelling one-pulse solutions of thethree-
omponent model (1.6), as well as the existen
e of stationary two-pulse solutions. The mainresults are presented in Theorem 2.1, Lemma 2.2, and Theorem 3.1 for the one-pulse solutions,and in Theorem 5.1 for the two-pulse solutions. Moreover, we studied various bifur
ations of thesesolutions, in
luding the saddle-node bifur
ation in whi
h the stationary one-pulse solutions are
reated (see Theorem 2.1), the bifur
ation from stationary to travelling one-pulses (showing thatthis may be either sub
riti
al or super
riti
al depending on the system parameters, see Lemma4.1 and Corollary 4.2), and the saddle-node bifur
ation of two-pulse solutions, see Figure 13.In the 
ourse of this analysis, we also showed that this three-
omponent system 
onstitutes anideal system on whi
h to study pulse dynami
s. On one hand, it is suÆ
iently simple for analysisusing geometri
 singular perturbation theory, with all of the rea
tion terms, ex
ept for one, being
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Figure 18: The spatio-temporal dynami
s of a solution with symmetri
 four-pulse initial data.The parameter values are (�; �; 
;D; �; �; ") = (2:1;�1; 0; 5; 3900; 1; 0:01). Note that we a
tuallygive an asymmetri
 two-pulse as initial 
ondition and just `mirrored' the domain, this 
an bedone be
ause of the Neumann boundary 
onditions. Note that the time interval shown in the leftframe is so long that the breathing is not visible. Therefore, in the right frame, we zoomed in onthe time interval [11:2 � 106; 11:4 � 106℄ for the same solution, so that the breathing is 
learlyvisible.
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linear. On the other hand, it is suÆ
iently nonlinear to support ri
h pulse dynami
s. Indeed, theextent of this ri
hness was �rst demonstrated in [16, 17, 19, 23℄, and these intera
ting pulse solu-tions exist also for the s
aled equations (1.6) studied here. We think that the analysis presented inthis work o�ers a useful starting point for the analysis of these various pulse intera
tion s
enarios.Finally, we 
onsidered the limit in whi
h the three-
omponent system (1.6) redu
es to the more
lassi
al two-
omponent system (6.1). This two-
omponent system is almost the same as theFitzHugh-Nagumo equations, ex
ept that the se
ond spe
ies (inhibitor) also di�uses here. Itis shown that the two-
omponent system possesses only the one-pulse solutions, and not thetwo-pulse solutions of the type studied here. Hen
e, the addition of the third 
omponent, asintrodu
ed in [23℄, is essential for the existen
e of two-pulse solutions.Stability of the solutions studied here is an important topi
, as is demonstrated for instan
eby the bifur
ations to breathing pulses shown in Figure 16. This is the topi
 of a 
ompanionpaper [11℄, in whi
h we use the Evans fun
tion and the NonLo
al Eigenvalue Problem method[3℄ to 
arry out this analysis.The methods and analysis of this arti
le 
an be extended to 
arry out the analysis of pulsesolutions in the three-
omponent model with heterogeneity that is studied in [25℄. There, het-erogeneity is introdu
ed in (1.1) by making the 
onstant term in the U -
omponent vary in spa
ea

ording to a smoothed out step fun
tion. The heterogeneity indu
es interesting new pulse dy-nami
s, su
h as rebounding o� defe
ts, pinning by defe
ts, and penetration of defe
ts, as observedin numeri
al simulations. The invariant manifold theory from the �eld of geometri
 singular per-turbation theory that we have used in this arti
le, as well as the Melnikov 
onditions that weused, 
an also be applied to these types of heterogeneous systems, so that the pulse solutionsmay be 
onstru
ted. In 
onjun
tion with these observations, we point to an earlier example inwhi
h geometri
 singular perturbation theory was used to establish the existen
e of standing wavesolutions in a RD model of the Fabry-Perot interferometer, whi
h involves spatially-dependent
oeÆ
ients. See [22℄.
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